
Programming DesignProgramming DesignProgramming DesignProgramming DesignProgramming DesignProgramming DesignProgramming DesignProgramming DesignProgramming Design
SystemsSystemsSystemsSystemsSystemsSystemsSystemsSystemsSystems

A free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to theA free digital book that teaches a practical introduction to the
new foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. Bynew foundations of graphic design. By Rune MadsenRune MadsenRune MadsenRune MadsenRune MadsenRune MadsenRune MadsenRune MadsenRune Madsen.........

Start Reading

Subscribe to Newsletter

Introduction
“We are now in transition from an object-oriented to a
systems-oriented culture. Here change emanates, not from
things, but from the way things are done.”
Jack Burnham (1968), Systems Esthetics

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

https://twitter.com/runemadsen
/introduction
https://confirmsubscription.com/h/t/2E81B263662AA1A0

If I asked you to define the role of a graphic designer, what would it be?
The answers to this question can vary widely, but my definition would be
something like this: A graphic designer is someone who communicates a
piece of content in shape and color. This work can take many forms, but
up until recently, it mainly consisted of printed products in the form of
posters, business cards, book covers, etc.

Today we find ourselves facing new challenges, not because this definition
of design has changed much, but because the products we're required to
build have changed. We now spend a majority of our time looking at
screens instead of paper, and this has created a great need for designers
who understand how to design for digital devices. But a digital product is
not the same as a printed product. Digital products are displayed on
screens of different sizes and with dynamic content. Digital products
allow users to interact with their content, and take advantage of motion
and animation. Furthermore, digital products often have temporal logic
where a linear narrative is replaced by a set of complex states and
transitions. All in all, digital products all share a common trait: They are
created with programming languages.

For a field rooted in the fine arts, this has been a difficult transition. Many
graphic design schools have resorted to teaching a waterfall philosophy
where students are positioned to think of themselves as creatives who
come up with ideas for others to build. After all, this is easier than
adopting a whole new set of processes. However, the fundamental
problem with this approach is that static design tools like Illustrator and
Sketch fail at prototyping digital systems. Even in web design where the
page metaphor is still prevalent, it seems limiting to define the design to
just the styles of the page. Is google.com a good website because of the
look of the search field? The traditions from the fine arts is a great
positive, and this very book builds upon that foundation. However, there is
a century-long bond between the field of design and new advances in

technology, and if graphic designers do not become fluent in this new
digital reality, they will become irrelevant. We now have the ability to write
code that produces beautiful designs, and the designer of tomorrow will
have to understand how to deliver on that promise.

This book is the result of a simple question: What happens when we try to
redefine the graphic design curriculum using a programming language as
the tool for the designer? There are several reasons why this is a powerful
concept. First of all, graphic designers have always used systems in their
work. We use grid systems to balance our layouts and color circles to pick
colors with proper distance to each other. History has shown us that
systems can cure the fear of the blank canvas, and it is a powerful concept
to encode these ideas into actual software. Second, code enables
designers to do things they couldn't do before. Variations of a design can
be tested much faster during the prototyping phase, and randomization
can be used to reveal designs that the designer would never have created
with a pencil. Third, it enables designers to create dynamic systems that
can change their designs based on time, place, or use. Throwing a design
over the wall for production is a bad legacy of the printed page, and there
is no reason for the design process to end with the birth of a product.

This book is structured like an introductory text about graphic design,
focusing on the elements of visual design and how they relate to
algorithmic design. The book is written for designers wanting to become
better programmers and vice versa. As you go through the text, you will
notice that it starts with the very basics. The code will be simple and the
exercises will be very constrained. If this feels simplistic, keep reading. We
will soon enough touch upon more challenging themes, but these basic
concepts lay the foundation for some of the more complex ideas. At the
end of the book, it is my hope that you have learned two new skills: How to
use code to create new and interesting graphic designs, and how to
evaluate whether these designs can be considered successful.

I have decided to use the P5.js JavaScript library for all examples in the
book. It has proven to be a great programming environment for beginners
while also being powerful enough for advanced users. I am aware that it is
impossible to choose a single programming language that will work for
everyone, and readers will probably need to port the ideas from this book
to other languages and frameworks depending on the nature of specific
projects. I have therefore tried to write the text to be as general as
possible. It is also important to note that this is not a book about web
design. Although the examples can be embedded on any web page, the
techniques can be applied to both digital and print work. In fact, I have
seen my students create a diverse range of designs over the years,
including projects in sculpture, painting, fashion, photography, game
design, web design, and printed matter.

The book is written for readers with an introductory knowledge of
programming in JavaScript, which means that little time will be devoted to
explaining concepts like variables, functions, and loops. For this audience,
I highly recommend Daniel Shiffman's Coding Rainbow YouTube channel,
where Dan does a much better job explaining these concepts than I ever
could. These videos will also introduce the basic concepts of programming
in P5.

I am not the first author to write about systems in graphic design, and this
book uses ideas from many incredible authors who are too numerous to
mention here. I am not the first to write about code and graphic design
either, but I've been frustrated by books on the subject that seem to fall in
two categories: Those with a focus on code and generative design that do
not teach graphic design principles at all, and those celebrating
computational design as a spectacle without identifying how projects are
made or why they are successful. There is a need for educational material
that teaches the fundamentals of graphic design in a modern way,
especially if it also gives students mental models for critiquing digital

http://p5js.org/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

design projects.

I have chosen to publish this book for free online without a publisher. The
main reason for this is freedom. It allows me to write and design the type
of book that I would read. This is reflected in the structure of the book,
which consists of many shorter chapters that are easier to read on the web
and straightforward for teachers to remix for use in classrooms (which is
completely legal because of the Creative Commons license). I will be
writing these chapters in a nonlinear fashion, working on topics that I find
the most interesting at a given time. There is no concrete deadline for the
finished book, although I am pursuing it as a full-time endeavor. The
source code for the book is available on GitHub, and I encourage all
readers to submit issues or pull requests with edits. To stay up to date
with the progress of the book, you can subscribe to the newsletter.

I would like to thank a group of people without whom this book would
never have existed. When I moved to New York in 2009 to study at The
Interactive Telecommunications Program at New York University, I only
had a vague notion of wanting to work in the intersection between art and
code. As a Flash developer who primarily built banners for advertising, the
two years at ITP completely changed my thinking. I would like to thank
Dan O'Sullivan for his enormous support for this project, which started as
a class at ITP, and is currently growing into a book while I'm a research
resident there. This book would not exist without the help and mentorship
of Daniel Shiffman, whose work has inspired thousands of students to
learn code. I want to thank Stewart Smith, who taught the Visualizing
Data class where the early ideas for this book began. My thanks go to all
of the ITP faculty and alumni who helped shape these ideas, including
Patrick Hebron, Greg Borenstein, Clay Shirky, Danny Rozin, Tom Igoe,
David Nolen, Gabe Barcia-Colombo, and George Agudow. A special
thanks go to Lauren McCarthy, the original author of P5.js, and to Casey
Reas and Ben Fry for their work on Processing. I want to thank Chandler

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/content

Abraham for his detailed edits in the chapter on color spaces, as well as
Claire Kearney-Volpe for answering my numerous questions about
accessibility. Now, let's begin.

What is a design system?
No matter where you go, you are surrounded by systems. We use the word
‘system’ to describe a group of interacting parts as a common whole, and
these can be simple, like a watch, or incredibly complex, like the web of
computer networks we call the internet. In this book, the term ‘design
system’ is used to describe a philosophy that encourages designers to
define the rules of their designs as a system of instructions that can be
used on more than a single product. This is best explained with a simple
story.

Let us suppose I am asked to design a label for a local brewery’s famous
stout beer. I want to make sure that my design is a good fit for the product,
so I spend a lot of time researching and tasting the beer before making my
final design. The brewery loves my new design, and they ask me to design
labels for the rest of their 10 beer types. Now I am faced with a problem.
The colors, typography, and illustrations I chose for my label design was a
great fit for a strong and dense beer, but it will not work for the other
beers. So I end up creating labels with a different visual style for each
beer, but without a consistent branding for the brewery.

This problem could have been avoided had I designed the first label with
the conviction that it would be a part of something bigger: A design
system for the brewery. Instead of focusing on the particular stout, I would
have defined a range of visual styles to be used for different beer types.
This would include a set of related typefaces and colors with enough
variance to be used for the individual beers, but recognizable enough to

provide a common identity for the brewery. Only after creating this design
system would I design the first label.

The Graphics Standards Manual created for the New York Transit Authority in 1970
is one example of a design system. With more than 350 pages, it defines visual
guidelines for all signage related to the New York City subway. ©

Design systems offer a different way of thinking, where the designer is
forced to consider many scenarios and constraints instead of relying on a
one-off design process. This approach is of course nothing new, and some
might say that it has always been a part of the designer’s job. Thousands
of design systems have been created over the years, from the New York

Transit Authority Graphics Standards Manual to Google’s Material Design.
Most Fortune 500 companies are recognizable for a reason: they have
defined strict rules for use of typography and color across their product
line.

Google’s Material Design document was created to help explain the ideas behind
the company’s visual language. This includes rules for use of color, layering, and
animation.

A recent example of a simple design system is the MIT Media Lab logo
created by Pentagram. The idea is simple: Fill a 7x7 grid with
perpendicular lines to create abstract letters or symbols in black and
white. This system is used to create logos with acronyms for the 23
research groups at the lab, and as a basis for building a custom typeface,
icons, and patterns.

https://material.google.com/

The MIT Media Lab design system. ©

This logo is an excellent example of how a design system can be used to
give both a consistent look and a distinct style to an organization. The
system is both simple and flexible, and it has room for an almost infinite
number of designs.

Design systems are especially interesting today, because digital products
are systems, and designers who code are no longer confined to the
creation of design systems that end up in printed manuals. Code allows
designers to not just create designs, but build digital systems that create
designs. Granted, more time will be spent on formulating the rules of the
system in code, but designers will be free from the limitations imposed by
traditional design software. The American computer scientist Donald
Knuth writes about this very thing:

“Meta-design is much more difficult than design; it is easier
to draw something than to explain how to draw it. One of the
problems is that different sets of potential specifications
cannot easily be envisioned all at once. Another is that a
computer has to be told absolutely everything. However, once
we have successfully explained how to draw something in a
sufficiently general manner, the same explanation will work
for related shapes, in different circumstances; so the time
spent in formulating a precise explanation turns out to be
worth it..”
Donald Knuth (1986), The Metafont Book

The words “sufficiently general manner” are important here. Software can
be written to allow a range of possible outputs, and variations of a design
system can be generated in (literally) fractions of a second. The ability to
procedurally generate designs is one of the most empowering aspects of
algorithmic design, whether it leads to generating 45,000 variations of a
logo, building an infinite galaxy of planets with generative landscapes, or
creating a dynamic article that changes its content based on map
selections.

http://thegreeneyl.com/mit-media-lab-identity-1
http://thegreeneyl.com/mit-media-lab-identity-1
http://www.no-mans-sky.com/
http://www.nytimes.com/interactive/2015/05/03/upshot/the-best-and-worst-places-to-grow-up-how-your-area-compares.html

A poster designed by Paul Rand. ©

The same poster recreated in code.

In this book, we will investigate what designers can build when they are
encouraged to create design systems and make these systems come to
life by writing software.

Shape

Figure and ground
Graphic design is the art of using form and color to successfully convey a
message, but this is not as easy as it sounds. The design process is one of
trial and error, and it often takes many iterations to create a design that
clearly communicates what you're trying to say. Although we tend to think
of this process as something involving gut instinct, experienced designers
have an ever-expanding checklist of visual relationships that helps guide
them through to the final result.

We begin our journey into the field of graphic design by looking at the first
item on this checklist: The relationship between a figure and its ground. In
the following, we will use a single rectangle to demonstrate how three
simple variables – position, size, and rotation – can be manipulated in
code to create a variety of different expressions. Although this can seem
rather basic, these relationships are crucial ingredients in most successful
designs, and they also happen to be a great way to introduce the concepts
of visual communication.

Position
Most written languages have a natural reading direction. In a majority of
the Western world, characters are arranged in horizontal lines, and we
read from left to right, top to bottom. This tells us that the position of a
shape can be used to guide the eyes of a user through a design. Graphic
novels use the positioning of captions to guide the reader through the

storyline, and most newspapers float quotations to visually separate them
from the body text.

First, because of reading direction.

Last, because of reading direction.

In these posters for Swiss Auto Club, Joseph Müller-Brockmann uses
position (and size) to prioritize certain shapes. In the first poster, the
vehicle in motion is prioritized over the running child. This heightens
tension and makes it apparent that the vehicle is on a collision course with
the child. In the second poster, the hand-signaling cyclist is the first shape
on the page, which achieves exactly the opposite effect.

Joseph Müller-Brockmann ©

We use the rect() function to draw a rectangle with P5, and the first two
numbers passed to this function determine the position of the shape
within the canvas. If these numbers are both zero, the shape will appear in
the top left corner, and higher values will draw it further to the right (x)
and bottom (y) of the canvas. This makes it easy to position shapes in
code, and many graphic programming languages work this way.

rect(0, 0, 100, 100);
rect(300, 200, 100, 100);

Instead of randomly typing numbers until a shape is in the right position,
it can be beneficial to use simple math to calculate the position of the
shape based on the size of the canvas. This will define the relationship
between the canvas and shape explicitly in your code, and make it easier
to scale the design. As an example, take the following image.

This design could be achieved by using numbers slightly smaller than the
canvas for the x and y position of the rectangle. However, was I to
change the width of the canvas, the rectangle would no longer show up in
the right place. I would need to change the x position of the rectangle to
reflect the new canvas size.

This is fixed in the code below, where the width and height variables
are used to dynamically calculate the position of the rectangle. To
calculate the x position, we start at the right edge of the canvas (width),
then subtract the size of the rectangle (100), and finally subtract the gap
we want between the edge of the canvas and the rectangle (25). The
same formula is used for the y position.

rect(width - 100 - 25, height - 100 - 25, 100, 100);

Size
By increasing the size of important shapes and decreasing the size of less
significant shapes, you can bring clarity to a design. This is a pattern we
encounter daily in everything from traffic signs to headlines in an article.

This square is dominant because it takes up most of the canvas.

This square is less dominant because of the large empty space around it.

The Think Small advertising campaign from 1959 is a great example of
how size can be used to emphasize supporting text copy. In this series of
magazine ads, an image of the Volkswagen Beetle is printed in different
sizes within an otherwise empty canvas.

Think Small posters ©

The third and fourth number passed to the rect() function define the
width and height of the shape. Like the position, it can be beneficial to

calculate the size of the rectangle dynamically based on the size of the
canvas. Building on the example from above, the following code shows a
truly dynamic design, where the static numbers used for size and spacing
have been replaced by calculations. Now, both the position and size of the
rectangle scales with the canvas automatically.

rect(width - (height/3) - (width/20), height - (height/3)
- (width/20), height/3, height/3);

However, there is one big problem with the code above: It has become very
hard to read. If you need to change the position of the rectangle, it will
take you a while to mentally parse what's going on. To solve this problem,
it is often helpful to use variables at the top of your code to store these
numbers. This makes the code more readable, which makes it easier for
you (and other programmers) to change it later on. The following code
produces the same design, but all numbers are now saved into variables
with names that clearly communicate their purpose.

const size = height / 3;
const margin = width / 20;
const x = width - margin - size;
const y = height - margin - size;
rect(x, y, size, size);

Keeping your code organized is very important, especially as you start to
make designs with more than a single shape.

Rotation
When you rotate a shape, the whitespace around it changes, and this can
be used to make a shape appear active or in motion.

A rectangle with no rotation appears static because of the symmetric whitespace.

A rotation of 45° creates more complex – but still symmetric – whitespace.

A rotation of 27° breaks the symmetry, and the rectangle appears in motion.

Rotated shapes can be found in many design products: Books written for
children often use rotated shapes to create fun and playful designs.
Popular magazines use rotated grid systems to make the content look less
dry, while publications for a narrow audience might enforce horizontal and
vertical lines to imply quality of the content within.

Paul Rand uses rotated rectangles on a playful cover for a children's book. ©

The podium in the Adidas logo is rotated to convey speed and dynamism. ©

The rotate() function takes a single number, which is expected to be the
desired rotation in radians. A radian is a mathematical unit of angular
measure based on the radius of a circle. If you follow the outline of a circle

for the length of its radius, that angle is 1 radian. By the magic of numbers,
a full circle is therefore 2π (or about 6.283) radians. For those not
interested in the intricacies of PI, the radians() function can be used to
convert degrees to radians. All of the following lines of code will result in a
rotation of (about) 90 degrees.

rotate(PI/2);
rotate(1.57);
rotate(radians(90));

When you use the rotate() function, you are not rotating individual
shapes, but the entire canvas. Because all shapes are drawn on the
canvas, they just happen to rotate too. Combined with translate() ,
which moves the starting point of the canvas, it's possible to achieve
exactly the kind of rotation you want.

As an example, let us suppose we want to add rotation to our rectangle
example from above. Here, we have added a single rotate() function
before drawing our rectangle. Notice how the canvas (represented by the
darker box) is rotating around its own beginning, not the rectangle.

const size = height / 3;
const margin = width / 20;
const x = width - margin - size;
const y = height - margin - size;
rotate(radians(10));
rect(x, y, size, size);

If we want the rotation to happen around the top left corner of our
rectangle, we have to do something that might feel a bit unintuitive. First,
we have to move the canvas to the position of our rectangle by using the
translate() function. After calling the rotate() function, we then draw our

rectangle at the top left corner of the translated canvas. As you can see,
the rotation now happens around the rectangle.

const size = height / 3;
const margin = width / 20;
const x = width - margin - size;
const y = height - margin - size;
translate(x, y);
rotate(radians(10));
rect(0, 0, size, size);

As we dive into more layout techniques, we will further investigate how to
use translate() and rotate() to make more sophisticated designs.

Designing a word
A good way to practice these relationships is the ‘design a word’ exercise.
Pick an adjective from the dictionary and make a design for it by changing
the position, size, and rotation of a single rectangle. This helps you build
one of the most fundamental skills in graphic design: The ability to create
visual relationships that make sense for your content.

The following example demonstrates the exercise for the word steep. How
would you make a design for this word using just a rectangle and the
three variables? Look for connections between the word and your
variables, and you might notice that steepness and rotation are related:
You can make the rectangle appear like a steep hill by rotating it. By
changing the size, you can make that hill longer, continuing outside the
canvas. By changing the position of the rectangle, you can create
asymmetric whitespace, making sure that the user notices the rectangle.
The following sketches demonstrate these steps in code.

1. First we rotate the rectangle until it looks steep.

2. Then we change the size to make it go beyond the canvas.

3. Then we draw attention to the rectangle by moving it away from the center.

The following examples show a few more designs to be used for
inspiration. Keep in mind that not all adjectives will be this straight-
forward, so you might find yourself longing for more shapes. That is the
subject of the next chapter, so do not worry.

Flat See Code

Big See Code

Shy See Code

This chapter demonstrates an approach that will be a continuing theme
throughout this book: We will take topics from graphic design theory,
understand how these ideas can be implemented in code, and practice
these concepts through exercises. Although this was just the first step into
the world of graphic design, the relationship between a figure and its
ground is important. It is common to find problems in existing designs
that can be traced back to this relationship, whether it's a user interface
that fails to emphasize an important button, or a graph with ambiguity
around its underlying dataset. Remember not to rush to make things
pretty, and make these concepts a crucial part of your design process.

Pick a random adjective from the dictionary, and write a sketch that
tries to convey that word by changing the position, size, and rotation
of a single rectangle. Do this for a couple of words, and ask friends to
guess the word-image combinations.

EXERCISE

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/figure-and-ground/flat.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/figure-and-ground/big.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/figure-and-ground/shy.js

Shape

Basic shapes
As long as we have had the ability to draw, humans have used shapes for
visual communication. Although shapes are not words, and therefore have
no objective semantic meaning, we have a natural understanding of how
to translate the characteristics of shapes into meaning: Cave paintings
created more than 30,000 years ago can be appreciated today without a
need for translation.

In this chapter, we will look at the three basic shapes: the rectangle, the
ellipse, and the triangle. First, we will analyze the characteristics of each
shape, and then demonstrate how to use these basic shapes in the design
process.

Rectangle
The rectangle is a symmetric, solid shape with parallel lines. As it does not
exist much in nature, it has become the symbol for civilization itself. We
build cities in rectangular grids, houses with bricks, and our interiors are
rectangles too: doors, shelves, and windows.

The rectangle has been used throughout the history of the arts to set up
constraints for the artist. We use rectangular canvasses, and grid systems
to further divide this canvas into smaller modules. In this digital age, we
use rectangular screens and operate with a square as the smallest visual
denomination: the pixel.

The squares in the Microsoft logo become a symbol for a window, a flag, and a
pixelated screen. ©

The logo for the 8-bit musician Nullsleep has a rectangle on top of a pixelated font
as a reference to both anti-authoritarianism and early computer art. ©

In geometry, a rectangle consists of four points connected to form a closed
shape with internal angles of 90 degrees. However, the rect() function
in P5 allows us to draw a rectangle by stating the position of the top left
corner (which we will call the origin point ●) as well as the size of the

rectangle. As demonstrated below, the rectMode() function can be used
to change the origin point of the rectangle to the center of the shape. This
can be helpful in certain situations, e.g. if you want to draw a rectangle in
the center of the canvas without needing to subtract half the size of the
rectangle from its position.

const size = width * 0.3;
rect(width/2, height/2, size, size);

rectMode(CENTER);
const size = width * 0.3;
rect(width/2, height/2, size, size);

Ellipse
The ellipse is a smooth shape found many places in nature, in the shape of
planets, raindrops, and the eyes of most animals. With no apparent sense
of direction, there is something neutral about the ellipse, and humans tend
to gather in ellipses to achieve unity: We dance in circles, and design the
seating of most parliaments in elliptical arrangements.

The symbol for the Olympic Games by Pierre de Coubertin consists of five
connected ellipses with colors taken from the flags of the participating countries
from the 1912 games. ©

The ABC logo by Paul Rand features a simple ellipse with an elliptical typeface. ©

In geometry, an ellipse is a closed shape that you can draw by hammering
two nails in the ground, connecting them by a string, and stretching a pen
through the string to draw a circular shape. Although the outline of an
ellipse looks smooth to the human eye, computers actually draw ellipses
as a series of short, straight, connected lines. Unlike rect() , the
ellipse() function will draw an ellipse with an origin point in the center
of the shape. As demonstrated below, the ellipseMode() function can be

used to change the origin point to the top left corner. Given the nature of
the ellipse, this means that the origin point is located outside the outline
of the shape.

const size = width * 0.3;
ellipse(width/2, height/2, size, size);

ellipseMode(CORNER);
const size = width * 0.3;
ellipse(width/2, height/2, size, size);

Triangle
The triangle is an asymmetric shape, unique among the basic shapes for
its directionality. It is commonly known as the symbol for both masculinity
(▲) and femininity (▼), and it is widely used in graphic design for its
aesthetic qualities. One of our most significant cultural artifacts, the Great
Pyramids of Giza, are also famous depictions of the triangle, pointing
towards the assumed rotational center of the sky to which the Egyptians
ascribed godly qualities.

The Delta logo is a triangle consisting of four smaller triangles. The logo refers to
the greek triangle letter by the same name, and the directionality of the triangle is
used to imply speed and flight. ©

In geometry, a triangle is a closed shape consisting of three points. The
sum of the internal angles of the triangle will always be 180 degrees (or PI
radians). The triangle has played a central role in many mathematical
breakthroughs, including Euclidian geometry, trigonometry, as well as 3D
computer graphics. Unlike the rect() and ellipse() functions that
both expect a single position for the shape’s origin point, the triangle()

function needs the coordinates of all three corners of the triangle. This
also means that there is no such thing as a triangleMode() function. You
will need to perform your own calculations to draw a triangle around a
specific origin point, which is demonstrated in the examples below.

const size = width * 0.15;
translate(width/2, height/2);

triangle(0, 0, size, size*2, -size, size*2);

const size = width * 0.15;
translate(width/2, height/2);
triangle(0, -size, size, size, -size, size);

An ice cream cone
I give my students the following (somewhat silly) exercise: Design an ice
cream cone in black and white with only a single occurrence of each of the
basic shape functions in the code. These tight constraints force the
students to focus on the characteristics of the shapes, and how they can
position, size, and rotate these shapes to achieve an effective design.

The most important aspect of this exercise is obviously to create a design
that a majority of users will recognize as an ice cream cone. Whether or
not a design accomplishes this is a rather objective task. Of the two
designs below, it is clear that the first design manages to solve the
assignment while the latter does not. It is also easy to analyze why:
Although the shapes are almost identical between the two designs, the
latter does not establish the proper visual relationships.

A second (and more subjective) aspect relates to the style of the design.
To a certain degree, different styles fit different scenarios. If you are asked
to create an icon for a website, an abstract style might be prefered, as
simple designs work better in small sizes. On the other hand, if you are
making an illustration for a children’s book, something more bold and
playful might be a better fit. Style can be used to serve a specific function,
or it can be used purely for aesthetic qualities (which can also be a
function, after all). Finally, the style of a design is where the subjective
preferences of the designer is apparent.

In this exercise, I often encourage my students to practice designing in
different styles, as it further develops their visual language. An important
ingredient in the creation of style is the use of the fill(), stroke() and
strokeWeight() functions. As demonstrated below, these function can
drastically alter the style of a design.

Equally proportioned shape with the same stroke results in an abstract design.

Thicker strokes and fills makes for a more playful design.

This exercise also encourages students to think systematically when
implementing their designs in code. The three basic shape functions can
only appear once in the code, so students need to use loops to draw more
intricate designs. The following three examples are all by former students
of mine, and they are displayed here as successful examples of all the
things mentioned above: They all objectively solve the assignment of
constructing an ice cream cone out of basic shapes. They all achieve
widely different styles by using a clever combination of the basic shape
functions and the following relationships: position, size, rotation, fill, line
and stroke weight. Finally, they all use repetition (to which we will
dedicate an entire part of this book) to draw more than three shapes on
the canvas.

Design by Luisa Pereira. See Code

Design by Shir David. See Code

Design by Tan Ma. See Code

When you feel comfortable designing with basic shapes, it is time to
introduce more complex shapes in your design process. We will do this in
the next chapter by looking at a few foundational concepts from
computational geometry before venturing into procedural shape

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/basic-shapes/cone-luisa.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/basic-shapes/cone-shir.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/basic-shapes/cone-tan.js

generation.

Design an ice cream cone in black and white with only a single
occurrence of each of the basic shape functions in the code.

Shape

Custom shapes
Although it is a good exercise to design only with simple shapes, complex
shapes offer more possibilities. In a manual design process, complex
shapes often take a long time to draw, as every detail of a design will need
to be created by hand. Although efforts have been made to automate such
tasks, some designs are still tedious to create in current digital design
tools like Adobe Illustrator or Sketch. This is particularly true for designs
that require the use of repetition or randomization, like a pattern of Sine
curves with changing amplitudes. In code, we have the ability to
procedurally generate very complex shapes in an instant, and the code
required can be quite simple. On the other hand, shapes drawn randomly
with a pen can be hard to recreate in code, especially if there is no
underlying rule to explain the outline of the shape.

In the following chapters, I will introduce a range of techniques to
procedurally draw custom shapes. However, we must first understand the
basic concepts of drawing shapes in code, which means looking at the
beginShape() function, as well as the many vertex functions that can be
used to define the outline of a shape.

EXERCISE

build/build1/MBINSERTPREVHREF

Programming custom shapes
Most graphics programming languages allow you to draw custom shapes
like a Connect the Dots drawing: You define a series of points – which we
will refer to as vertices – that are connected via lines to form the outline of
a shape.

Each vertex in a shape determines how it is connected to the vertex before
it. If it is a simple vertex, it will be connected with a straight line. If it is a
curved vertex, it will be connected with a curved line. The shape can
optionally become a closed shape by connecting the last vertex to the first
vertex. P5.js follows this same concept. Use the beginShape() function to
start a new custom shape, define the vertices of the shape with the
desired vertex functions, and finally connect the lines in the shape by
calling the endShape() function with an optional argument to close the
shape. In the following, we will examine these vertex functions.

Straight lines
The vertex() function creates a simple vertex that connects to the vertex
before it with a straight line. This is the simplest of the vertex functions,
and all shapes created with beginShape() must start with a vertex()

function call to define the starting point of the shape. This is illustrated in
the example below. Try dragging the vertices to see the resulting code.

The following examples are all created with simple vertices, but use
strokes and fills to achieve very different designs.

See Code

See Code

See Code

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/vertex-arrow.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/vertex-mountain.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/vertex-house.js

Bézier curves
To create a vertex that is connected to the vertex before it with a curved
line, we use the quadraticVertex() and bezierVertex() functions.
These are a bit more complex than the vertex() function, because they
need several x and y coordinates to control the curve of the line. To
understand how this works, let us have a brief look at the concept of
Bézier curves.

The Bézier curve algorithm was popularized by Pierre Bézier in the 1960’s
as a solution to a common problem in computational geometry: Drawing
curved lines that can scale to any size. The Bézier curve algorithm solves
this problem in a very elegant way by introducing the idea of control
points: Invisible gravity points that attract the line to bend it into a curve. A
Bézier curve with a single control point is called a quadratic Bézier, while a
Bézier curve with two control points is called a cubic Bézier. If you have
ever used the Pen tool in Adobe Illustrator, you are already familiar with
this concept.

This animation shows how a quadratic Bézier curve is calculated.

This animation shows how a cubic Bézier curve is calculated.

You can draw a quadratic bezier curve with the quadraticBezier()

function, passing the coordinates for the single control point and the
vertex itself. Likewise, you can draw a cubic Bézier curve with the
bezierVertex() function, passing coordinates for the two control points
and the vertex itself. The only difference between the two functions is the
addition of an extra control point in the bezierVertex() function, which
allows you to draw more sophisticated curves. This is illustrated below
where both types of curves are used to draw a custom shape. Try dragging
the vertices and control points to see the resulting code.

It takes a bit of practice to master the Bézier functions, and knowing how
many Béziers you need to draw a specific shape can be hard in the
beginning. It does not help that control points are invisible, so it can be
helpful to spend some time playing around with the example above before
diving into the code. Below are three examples that all use the Bézier
functions to create custom shapes.

See Code

See Code

See Code

Contours
While we can draw most shapes with vertex() , quadraticVertex() ,
and bezierVertex() , these functions won't allow us to create shapes
with holes. In P5.js, a hole is called a contour, and you can draw shapes
with contours using the beginContour() and endContour() functions. In
essence, the beginContour() function instructs P5 that you are starting a
new shape that will be subtracted from your main shape. Like
beginShape() , you use the vertex functions to draw your contour, and use
endContour() to end the contour.

See Code

beginShape();
// draw rectangle here
beginContour();

// draw triangle here
endContour();

endShape();

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/quad-circle.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/cubic-key.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/cubic-letter.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/contour.js

Wet and Sharp
You can practice designing custom shapes by continuing the ‘design a
word’ exercise from the previous chapters. My assignment to students
sound something like this: Make a design with two shapes in black and
white that represents the words ‘wet’ and ‘sharp’. There are several
reasons why this is a challenging assignment. First of all, the student has
to consider how the outline of a shape can help communicate either of
those words. Most designs end up using curved vertices to represent wet
and simple vertices to represent sharp, but some designs cleverly achieve
the goal by doing the opposite. Also, the fact that these shapes exist in the
same canvas encourages the student to consider how the shapes can
interact with each other to achieve a more dramatic effect. Pointing a
knife-like shape directly at a smooth shape will create a certain tension
which would not exist if the shape pointed in the other direction.

By Luna Chen. See Code

By Sean McIntyre. See Code

The examples in this chapter have a lot of vertices meticulously defined in
code, exactly like you would draw them with the mouse. This is of course
not the ultimate promise of algorithmic design. Why make shapes in code
when they are faster to draw with a mouse? In the following chapters, we
will look at a number of techniques that can be used to draw shapes in a
more procedural way.

Create a design with two shapes in black and white representing the
words ‘wet’ and ‘sharp’. The shapes have to be created with the

EXERCISE

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/wetsharp-luna.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/shape/custom-shapes/wetsharp-sean.js

beginShape() and endShape() functions.

Shape

Procedural Shapes
The code for our custom shape examples has so far been rather tedious.
We have manually created shapes by typing line after line of vertex
function calls, and this strategy will not work for more complex shapes.
Also, given the title of the book, this approach might seem a bit anti-
climatic. Now that we understand the basics of beginShape() , let us have
a first look at how to procedurally draw custom shapes using a for loop,
and the sin() and cos() functions.

Sine and Cosine
Over the years, I have seen many students struggle with Sine and Cosine.
It is easy to understand why: These words seem rather scary and abstract,
especially if you do not consider yourself good at math. However, this is
both unfortunate and unnecessary. Unfortunate, because these two
functions are a fundamental part of most programmatic designs, and a
good understanding of them will allow you to solve many visual problems.
Unnecessary, because they are not that hard to learn. Even if you do not
understand everything presented in this chapter, you can get started by
memorizing two almost identical lines of code.

Sine and Cosine allow us to find any position on the outline of an ellipse.
They do this by converting an angle into an x position (Cosine) or a y

position (Sine) for a circle with a 1 pixel radius. These values can then be
multiplied by the radius of your actual circle to scale them up. Although it
is not strictly necessary to understand how these functions work
internally, here is a way to visualize what is going on: Imagine a right sided

triangle connecting the center of the circle to the point on the outline. The
Sine function is a quick way to get the ratio between the left side
(hypotenuse) and the right side (opposite) of that triangle. The Cosine
function is likewise the ratio between the hypotenuse and the bottom side
(adjacent) of the triangle.

Given an angle on a
circle with 1px radius

Cosine finds x

Sine finds y

In P5, these functions are called sin() and cos() . As described above,
they accept a single argument – an angle in radians – and return a value
between -1 and 1 representing the x or y position on a tiny circle. The
two lines below demonstrate how to get these values and multiply them
by the radius of your actual circle. Memorize these two lines, as they are
very important.

const x = cos(RADIANS) * RADIUS;
const y = sin(RADIANS) * RADIUS;

To put this into context, here is an example where we use the same code
to draw a small circle 330 degrees along the outline of a bigger circle.

translate(width/2, height/2);

noFill();
const radius = width * 0.3;
ellipse(0, 0, radius*2, radius*2);

fill(30);
const x = cos(radians(330)) * radius;
const y = sin(radians(330)) * radius;
ellipse(x, y, 20, 20);

If you consider all the basic shapes – as well as many complex shapes –
they are characterized by having non-overlapping outlines that move
around a center point. Some shapes, like the triangle, have just a few
vertices, while others – like the ellipse – have many vertices. The sin()

and cos() functions give a way to procedurally draw these types of
shapes.

The For Loop
Although we will dedicate an entire part of this book to repetition, let us
briefly go over the basic functionality of a for loop. A for loop allows us
to execute code multiple times in a row by incrementing (or
decrementing) a variable – often called i – until an expression is no
longer true and the loop stops. In the following example, we initialize a
variable with the number 0 , iterate as long as our variable is lower than
10 , and increment our variable by one between each iteration. The result

is a loop that iterates ten times with our variable incrementing from zero
to nine, drawing ten rectangles on the screen.

for(let i = 0; i < 10; i++) {
rect(0, 0, 100, 100);

}

Unfortunately, all these rectangles have identical positions and sizes
because we are passing the same static numbers to the rect() function
over and over again. This is where i comes into play: Because it changes
between each iteration of the loop, it can be used to create variance
between each rectangle. The example below uses i to position the ten
rectangles one pixel apart on the x-axis.

for(let i = 0; i < 10; i++) {
rect(i, 0, 100, 100);

}

Although it might not be immediately clear, this is an important technique
when drawing procedural designs. Because i increments by one
between each iteration, it can be used as a scalar to distribute shapes
across the canvas. For example, if we want to position the rectangles next
to each other, we can multiply i with a number greater than the width of
the rectangles.

for(let i = 0; i < 10; i++) {
rect(i * 105, 0, 100, 100);

}

We can use this same technique to draw custom shapes. Instead of
drawing individual shapes in the loop, we use the for loop to procedurally

add vertices between the beginShape() and endShape() function calls.
In the example below, we use this technique to draw ten random vertices
in the center of the canvas.

translate(width/2, height/2);
beginShape();
for(let i = 0; i < 10; i++) {

const x = random(-100, 100);
const y = random(-100, 100);
vertex(x, y);

}
endShape();

The result is certainly a procedural shape, but the use of random() does
not give us a lot of control over the placement of the vertices: The shape is
just a bunch of lines randomly crossing each other. The final step is to put
our two techniques together and generate shapes with sin() and cos()

inside of a for loop.

Putting it together
Starting from our random shape code above, let us replace the random
vertices with vertices placed sequentially along the outline of an ellipse.
We do this by using the same two lines that we memorized earlier, but
instead of passing the same angle to sin() and cos() , we calculate a
different angle on every iteration by multiplying i with the angle we want
between the vertices. The result is a shape with ten vertices evenly spread
around the center of the canvas.

translate(width/2, height/2);
beginShape();
for(let i = 0; i < 10; i++) {

const x = cos(radians(i * 36)) * 100;

const y = sin(radians(i * 36)) * 100;
vertex(x, y);

}
endShape();

By changing the number of iterations and the spacing between the
vertices, you can draw all of the basic shapes. The code below adds a few
variables on top of the sketch to automatically calculate the spacing based
on the number of vertices. Change the numVertices variable and another
shape will appear.

const numVertices = 3; // or 4 or 30
const spacing = 360 / numVertices;
translate(width/2, height/2);
beginShape();
for(let i = 0; i <= numVertices; i++) {

const x = cos(radians(i * spacing)) * 100;
const y = sin(radians(i * spacing)) * 100;
vertex(x, y);

}
endShape();

‘Great, we have reinvented the basic shape functions’ you might say.
Actually, this technique allows us to draw much more sophisticated
shapes. Let's run through a few examples that all use the same sin() and
cos() formula to draw different types of shapes. We'll start with the
squiggly circle below that has a random radius for each vertex, making it
look like it was drawn by hand.

translate(width/2, height/2);

beginShape();

for(let i = 0; i < 100; i++) {
// Change the radius for every vertex

const radius = 100 + random(5);
const x = cos(radians(i * 3.6)) * radius;
const y = sin(radians(i * 3.6)) * radius;
vertex(x, y);

}
endShape();

The star below is created by alternating between a low and a high radius
for each vertex. It's easy to tweak the style of the star by using different
numbers or more vertices, or using rotate() to change the orientation of
the star.

translate(width/2, height/2);

// Set the initial radius to 100
let radius = 100;
beginShape();
for(let i = 0; i < 10; i++) {

// Use the radius in the cos/sin formula
const x = cos(radians(i * 36)) * radius;
const y = sin(radians(i * 36)) * radius;
vertex(x, y);

// Change the radius for the next vertex
if(radius == 100) {

radius = 50;
} else {

radius = 100;
}

}
endShape();

Here is a flower created with quadraticVertex() where all vertices and
control points are positioned using sin() and cos() . By using a larger
radius for the control points (the inverse of the star example above), the
curves go outwards. When using Bézier curves, remember to start the
shape with a vertex() function call. We do this by checking the value of
i within the loop.

translate(width/2, height/2);

// Automatically calculate the spacing
const numVertices = 7;
const spacing = 360 / numVertices;
beginShape();
// Loop one extra time to close shape with a curved line.
for(let i = 0; i < numVertices+1; i++) {
// Find the position for the vertex

const angle = i * spacing;
const x = cos(radians(angle)) * 100;
const y = sin(radians(angle)) * 100;
if(i == 0) {

// If this is the first run of the loop, create simple vertex.
vertex(x, y);

}
else {

// Otherwise create a quadratic Bézier vertex with a control point
halfway in between the points and with a higher radius.

const cAngle = angle - spacing/2;
const cX = cos(radians(cAngle)) * 180;
const cY = sin(radians(cAngle)) * 180;
quadraticVertex(cX, cY, x, y)

}
}
endShape();

You will often find yourself needing to use just one of the circular
functions. The two shapes below are created just like that: The first one
uses sin() and the second one uses cos() (as demonstrated in the code
below).

strokeWeight(20);
strokeCap(SQUARE);
translate((width/2) - 200, height/2);
beginShape();
for(let i = 0; i < 200; i++) {
// 2 pixel spacing on the x-axis.

const x = i * 2;
// 200 pixel high waveform on the y-axis.

const y = cos(i * radians(2)) * 100;
vertex(x, y);

}
endShape();

Sine and Cosine can be used to create a range of different shapes during
the design process. In this design by Josef Müller-Brockmann, a series of
exponentially growing arcs are rotated around the bottom left of the
canvas.

Beethoven poster by Josef Müller-Brockmann ©

Sediment Mars is a series of generative poster designs by Sarah Hallacher
and Alessandra Villaamil. The sin() and cos() functions are used to
generate an elliptical shape, which is then distorted by adding random
values to it.

Sediment Mars by by Sarah Hallacher and Alessandra Villaamil ©

The project Generative Play is a card game by Adria Navarro that uses
procedural drawing to create an infinite amount of generative characters.
The character bodies are created using sin() and cos() .

Generative Play by Adria Navarro ©

This chapter introduced an approach to design that is inherently different
than a traditional design process. Rather than individually placing each
shape on the canvas, we wrote algorithms to do this for us. Using loops to
procedurally draw shapes is a powerful concept, as it allows designers to
do more with less code, thus alleviating us from the pains of manually
constructing every design object by hand. This is also the hardest thing
about procedural design, as designers need to devote more time up front
distilling the system into code, and they cannot easily manipulate
individual shapes like in a traditional design tool. The American computer
scientist Donald Knuth calls this a transition from design to meta-design:

“Meta-design is much more difficult than design; it is easier
to draw something than to explain how to draw it. […]
However, once we have successfully explained how to draw

something in a sufficiently general manner, the same
explanation will work for related shapes, in different
circumstances; so the time spent in formulating a precise
explanation turns out to be worth it.”
Donald Knuth (1986), The Metafont Book

This is also the main thesis of this book. When designers learn to not only
think systematically about the design process, but also to implement
those systems in software, they can build things that were not possible
before.

Try to draw all the basic shapes using the techniques presented in
this chapter. Then continue to generate other types of shapes. Can
you use random() to manipulate the shape outline? Can you use
Bézier curves instead of simple vertices?

Color

A short history of color theory
Of all the subjects presented in this book, this part devoted to color theory
might be the most perplexing one. Although a basic understanding of the
color spectrum is rather easy to develop, color theory is an almost
infinitely complex subject with roots in both science and art. It can
therefore be a daunting task to learn about color composition in a way that
is true to both art history and scientific truth, and I have seen many
designers stumbling on the most basic of questions: Is yellow a primary
color? Which color combinations are harmonic? What is the true

EXERCISE

complementary color to blue?

I hope that this chapter on the history of color theory can help answer
some of these questions by highlighting both the mistakes and successes
of key figures in the field. In this abbreviated and narrow introduction, I am
especially interested in the conflict between the two distinct but related
fields that both operate under the term ‘color theory’: Artistic color theory,
which is concerned with the visual effects of color combination in the fine
arts, and scientific color theory, which describes the nature of color
through increasingly complex but precise color models. The following
chapters will build on lessons learned in this chapter, and it is my belief
that it is essential for designers to develop a solid understanding of this
history in order to make good decisions about color.

One of the first known theories about color can be found in On Colors, a
short text written in ancient Greece. The text was originally attributed to
Aristotle, but it is now widely accepted to have been written by members
of his Peripatetic school. Based on observations of how color behaves in
nature, the text argues that all colors exist in a spectrum between
darkness and light, and that four primary colors come from the four
elements: fire, air, water, and earth. This can seem rather weird and
speculative today, but these observations made sense at the time: A plant
is green above ground and white in its roots, thus the color must come
from the sun. Likewise, a plant left to dry will lose its vivid colors, thus
water provides color too. This theory is typical of how color theorists for
centuries used color to establish a general theory of the universe. Despite
the erroneous theory, On Colors has a series of important observations,
like the fact that “darkness is not a colour at all, but is merely an absence
of light” 1 – a discovery propelled by watching how clouds darken as they
thicken 2 .

Like so many other areas of science, Isaac Newton completely redefined

Newton's color circle used seven colors mapped
to a musical octave starting at the tone D.

the conventional theories on the behavior of light when he published the
first edition of Opticks in 1704. Rather than seeing light as a void of color,
Newton discovered that white light is a combination of all colors across
the color spectrum. The basics of his experiments was a well-known
phenomena: When you shine white light through a prism, the light is split
into colors from across the color spectrum. However, Newton discovered
that he could recombine these spectral colors to once again turn them into
white light.

Newton also
discovered that if he
blended the first color
(red) and last color
(violet) of the color
spectrum, he could
produce magenta, an
extra-spectral color
that does not exist in
the rainbow. This
prompted him to
wrap the color
spectrum into a
circle, beginning a
tradition of using
basic shapes to
represent the

relationship between colors. Newton used a circle because it could be
used to predict the result of color mixing for two colors by pointing to the
color midway between these colors. The colors on Newton’s circle have
asymmetric distances to each other because Newton wanted the circle to
have seven colors – the exact number of days in a week and musical notes
in an octave 3 .

Goethe's color circle with magenta, yellow, and
blue primary colors.

While Newton was interested in a scientific explanation of color, the
German poet Wolfgang von Goethe dedicated his book Theory of Colors
from 1810 to a more human-centered analysis of the perception of color.
Through a series of experiments that measured the eye’s response to
certain colors, Goethe created what is arguably the most famous color
circle of all time. The circle had three primary colors – magenta, yellow,
and blue – which he believed could mix all other colors in the spectrum.

This publication was
in many ways at odds
with Newton’s
theories, as Goethe
believed that the
prism, not the light,
was responsible for
the creation of color,
and that darkness
was not an absence
of light. Although
Newton eventually
won the argument
about the nature of
light, Goethe’s work is
important to us
because it focuses on
the cognitive effect
that color has on humans. His research on the effects of after-images and
optical illusions is especially interesting, because it points towards the
later works of Johannes Itten and Josef Albers 4 .

Even though Newton's and Goethe’s color circles may seem to be at odds
with each other, they are in some way both correct as they illustrate the

behavior of color in different material. Newton describes how his spectral
colors can mix most visible colors including white, and this is true because
light mixes in an additive way: Combining lights of different colors will
eventually result in white light. Goethe describes how his three primary
colors can mix most visible colors including black, and this is true because
pigments mix in a subtractive way: Combining paints of different colors
will eventually result in black paint by subtracting waves of light.

RGB in additive color mixing.

CMY in subtractive color mixing.

In a quest to create a unified notation for color – like we know it from
musical notation – artists soon started depicting the color spectrum as 3D
solids. A concurrent example of this can be found in Tobias Mayer’s color
triangle from his book The Affinity of Color Commentary, published
posthumously in 1775. Mayer sought to accurately define the number of
individual colors the human eye can see, and this required him to add
another dimension to represent the variations of brightness for each color.

Mayer painted the corners of a triangle with the three traditional primary
colors from painting – red, yellow, and blue – and connected the corners
by mixing the opposing colors together. Unlike the traditional color circle,
he created many variations of this triangle by stacking triangles of
different brightnesses on top of each other. This made it possible to define
a color by its position within a 3D space, a technique still used to this day.
Mayer ultimately failed at creating a color model with perceptually
uniform steps, as he did not understand the irregularities of the human
eye 5 .

Tobias Mayer's color triangles.

The German painter Philipp Otto Runge took this same approach when
creating his spherical representation of the color spectrum, published in
his Color Sphere manuscript in 1810. Runge’s sphere had white and black
poles with colored bands running between them. However, like many other
representations of color before it, the model did not differentiate between
brightness and saturation, which meant that the resulting model had little
variation in color intensity. This sphere had the same problem as Mayer’s

triangle, as the steps were not perceptually uniform 6 .

Philipp Otto Runge's color sphere.

Michel Eugène Chevreul attempted to fix this problem in his
hemispherical color system from 1839. Rather than mixing colors by
focusing on the amount of paint used, he based his selections solely on
what perceptually appeared to be the correct mixture. Inspired by the
work of Goethe, Chevreul used after-images to test the validity of his
mixtures. When a person stares at a green square for a long time and then
looks at a white wall, a magenta square will appear. This happens because
of fatigue in the green photoreceptors in the eye, and Chevreul used this
to establish the complementary colors in his model 7 .

Visualization of Albert Henry Munsell's color tree
from the 1943 renotation.

Michel Eugène Chevreul's color sphere.

One of the most historically significant color solids was created by the
American painter Albert Henry Munsell in the early 1900’s. Like his peers
before him, Munsell wanted to create a model with perceptually uniform
steps, and although he was a painter, his approach was very scientific: He
used human test subjects and a range of mechanical instruments he
invented to create a remarkably accurate model. One important detail
about Munsell’s color system is that he divided the color space into three
new dimensions: The hue determined the type of color (red, blue, etc), the
value determined the brightness of the color (light or dark), and the
chroma determined the saturation of the color (the purity of the color).
These dimensions are still used to this day in some representations of the
RGB color model.

Munsell first tried to
arrange his colors in a
sphere, but noted that
“the desire to fit a
chosen contour, such
as the pyramid, cone,
or cube, coupled with
a lack of proper tests,
has led to many
distorted statements
of colour relations” 8 .
Essentially, Munsell
realized that his color
solid had to have an
irregular shape to fit
his colors. The
explanation for this is

rather simple. Colors with low brightness have much fewer visible colors
between zero and full saturation (colors with zero brightness only have
one, black). Likewise, some hues have more range than others. You can
mix more visible colors between red and white than between yellow and
white, because yellow is a lighter color. Another important detail of
Munsell’s color system is that he prefered the use of a mathematical
syntax over color names to indicate a color’s position within the color
space. This is not unlike how we define colors in programming languages
today. Munsell’s color system had its flaws and inconsistencies, but it
managed to bridge art and science in a way not done before, and it still
forms the basis of the curriculum at many fine art institutions.

Many of the European art movements in the early 20th century had a
profound interest in the subjective experience of art, and although the
Bauhaus school in Germany was a school focused on a modern approach
to art, design, and architecture, two important publications on color and
perception were written by Bauhaus faculty: The Art of Color by Johannes
Itten 9 and Interaction of Color by Josef Albers 10 .

As a follower of the Mazdaznan religion, Itten’s view of the arts was highly
influenced by his spiritual beliefs. Following a strict vegetarian diet, he
was famous for performing rhythmic breathing exercises with his students
in order to have them realize their full creative potential 11 . In his mind –
like Goethe’s – it was the subjective experience of color that mattered, and
his book focuses on how color can be combined to invoke feelings in the
viewer. The central idea in Itten’s work is the existence of seven color
contrasts that artists must master in order to know the effect of their color
choices. Some of these contrasts are simple, like the contrast of light and
dark that exists when colors of different brightnesses appear next to each
other, or the contrast of hue that can be seen when colors of different hues
are used together 12 . These observations can still be used by aspiring
designers to guide decisions around color, as they give us a way to classify

color and think systematically about their use. Itten even operated with a
RYB color sphere remarkably similar to that of Runge to help explain these
ideas. Other of Itten’s contrasts can seem rather arbitrary, like his law of
simultaneous contrast that states how certain colors create visual effects
when used together. Itten often uses his own subjective experience to
establish a generalized theory on color and perception, as demonstrated in
the quote below.

“For the solution of many problems, however, there are
objective considerations that outweigh subjective
preferences. Thus a meat market may be decorated in light
green and blue-green tones, so that the various meats will
appear fresher and redder. [...] If a commercial artist were to
design a package for coffee bearing yellow and white stripes,
or one with blue polka-dots for spaghetti, he would be wrong
because these form and color features are in conflict with the
theme.”
Johannes Itten 13

Here, Itten’s personal preferences towards the color palette bleed into an
unnecessarily strict generalization about color and subject. Who is to say
that yellow stripes or blue polka-dots cannot be used effectively when
designing food product labeling?

Josef Albers, a student of Itten’s at the Bauhaus, took a more
demonstrative approach in his Interaction of Color from 1963. Using
opaque pieces of colored paper, Albers sets out to show the highly
dynamic nature of color, particularly how humans tend to perceive a color
based on the colors around it. Rather than trying to establish some unified
theory about why color behaves this way, Albers describes how students
can repeat these experiments to experience it on their own. This has made

The Interaction of Color one of the most important and timeproof books on
color composition. Pictured below is one of his most famous examples
with two small squares on colored backgrounds. The viewer naturally
assumes that the squares are filled with colors from the opposite
backgrounds, when they in reality are the exact same color.

These two small squares have the same color. Click the button to verify.

As illustrated above, our art history is full of arguments over the nature of
primary colors, which is in part caused by the confusion over subtractive
and additive color models. It is notoriously hard to mix yellow from darker
paints, which is why Goethe and other artists thought of yellow as a ‘pure’
color with qualities different from the rest of the color spectrum. We know
today that the concept of primary colors is actually a rather arbitrary one,
and there is no such thing as ‘pure’ primary colors for pigments. One can
choose any three colors to mix a subset of the spectrum, and although
some primaries can mix a wider range of colors, it is impossible to mix the
entire visible color spectrum in a subtractive color model.

“The conclusion [...] is that primary colors are only useful
fictions. They are either imaginary variables adopted by
mathematical models of color vision, or they are imperfect
but economical compromises adopted for specific color
mixing purposes with lights, paints, dyes or inks.”
Bruce MacEvoy 14

These discoveries are deeply integrated into the devices that we all use on
a daily basis. The industry standard for desktop printers and other
pigment-based printing mechanisms with subtractive color mixing is to
have three colors based on the CMY color model: cyan, magenta, and
yellow. It is now well understood that this particular set of colors can mix
an acceptable range of colors in ink. Printers also have a black ink because

these primary colors cannot mix to a true black, and it has the added
advantage of saving costly colored ink. However, professional printers can
have many more ink cartridges for better color accuracy. Epson, a leader in
digital printing technologies, uses ten ink colors in their UltraChrome®
HDR technology.

The industry
standard for
computer screens
and other light-based
display technologies
with additive color
mixing is to have
three primaries per
pixel based on the
RGB color model: red,
green, and blue.
These three colors
mix to an acceptable
range of the visible
color spectrum,
where the exact
amount is decided by
the quality of the
monitor, but also the
computer’s graphics
card. Any digital
design tool today will
allow designers to
define colors based
on a combination of
these three primaries.

Additive RGB and subtractive CMY share
complementary colors.

A special bonus of
the RGB and CMY
color models is that
even though they
have different primary colors, they share complementary colors.

Just like there is common agreement on the scientific nature of color
today, it is also known that the human experience of color is a highly
complex and subjective phenomenon. It is generally accepted that it is
impossible to create a simple, predictive theory about color harmony – the
type of approach that Goethe and Itten believed in. A number of factors
determine your response to a specific combination of colors, including
gender, age, mood, personal background, and current trends in society 15 .
In some sense, this should be a relief to aspiring designers. For one, it
relieves them from participating in irrelevant discussions about which
color circle has the ‘correct’ complementary colors. Also, without a simple
algorithm to find harmonic colors, the student has no choice but to use
their own eyes.

When reading this account of artists and scientists who dedicated their
professional lives to the creation of models that help other artists make
educated decisions about color composition, it should be clear that the
way designers today interact with color – the color picker – leaves much to
be desired. The color picker is as omnipresent as it is broken: With no
significant changes over the last decade, it fails to provide a meaningful
visual representation of the color spectrum, even though such models has
existed for more than 300 years. Instead, it uses a rectangular area to
show a single hue at a time, and designers are left with no way to visualize
the relationship between the selected colors, or even understand the
difference between a perceptually uniform color model and its
counterpart. The consequence is that this entire history of color theory is
neglected in modern design tools, which means that it is lost on students

too.

Luckily, we are not bound to digital design tools in this book. In the
following chapters, we will examine color models, color spaces, and many
techniques that can be used to generate color schemes in code. In order to
not make the same mistakes as the people before us, these chapters will
not seek to propose a unified theory about which colors are best for
certain scenarios. Instead, we will get to know the color palette, and learn
how to see the effects of different color combinations. This will hopefully
lead to students developing a sound theoretical foundation upon which to
base their practice.

1. Loeb Classical Library (1936) Aristotle’s Minor Works, p. 7. London

2. Gottschalk, H. B. (1964) The De Coloribus and Its Author, p. 59-85. Hermes 92. Bd..H. 1:
JSTOR. Web. 11 Jan. 2017

3. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 25. University of Chicago
Press

4. Sloane, Patricia (1967) Colour: Basic Principles New Directions, p. 28-30. Studio Vista

5. Lowengard, Sarah (2006) The Creation of Color in Eighteenth-Century Europe New York, para.
129-139, Columbia University Press)

6. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 48. University of Chicago
Press

7. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 175-176. University of
Chicago Press

8. Munsell, A.H (1912) A Pigment Color System and Notation, pp. 239. The American Journal of
Psychology. Vol. 23. University of Illinois Press

9. Itten, Johannes (1973) The Art of Color: the subjective experience and objective rationale of
color. Van Nostrand Reinhold

10. Albers, Josef (1963) Interaction of Color. Yale University

11. Droste, Magdalena (2002) Bauhaus, p. 25. Taschen

12. Itten, Johannes (1970) The Elements of Color, p. 33-44. Van Nostrand Reinhold

13. Itten, Johannes (1970) The Elements of Color, p. 26. Van Nostrand Reinhold

14. MacEvoy, Bruce. Color Vision Handprint : Colormaking Attributes. N.p., 1 Aug. 2015. Web. 11
Jan. 2017.

15. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

16. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

17. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

18. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

19. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design, p. 9. Arthur Niggli

20. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 2. The College
Mathematics Journal, Vol. 23

21. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 8-9. The College
Mathematics Journal, Vol. 23

22. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 10-11. The College
Mathematics Journal, Vol. 23

23. Malik, Peter (2017) P. Beatty III (P47): The Codex, Its Scribe, and Its Text, p. 31 - 38. New
Testament tools, studies and documents, Vol. 52

24. Fry, Stephen (2008) The Machine That Made Us. BBC UK

25. Apollonio, Umbro (2009) Futurist Manifestos, p. 104. Tate Publishing

26. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design. Arthur Niggli

27. Gerstner, Karl (1964) Designing Programmes. Arthur Niggli

28. https://www.nytco.com/who-we-are/culture/our-history/#2000-1971-timeline

29. Peter, Ian (2004) So, who really did invent the Internet?. The Internet History Project

30. https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/
2004/1231_grid_computi.php

31. Arnheim, Rudolf (1974) Art and Visual Perception, p. 8. University of California Press

32. Heider, G.M. (1977) More about Hull and Koffka, American Psychologist, 32(5), 383

33. Kroeger, Michael (2008) Conversations With Students, p. 27. Princeton Architectural Press

34. Design Systems International was co-founded by the author

Color

Color models and color spaces
While the previous chapter traced some of the important developments in
the history of color theory, this chapter takes a deeper look at the current
landscape of digital color theory. When working with color in
programming languages, one will encounter quite a few terms used –
often interchangeably – to describe a color’s position within the color
spectrum. In this chapter, we will look at three of these terms – color
models, color spaces, and color profiles – and examine why it is important

to develop a decent understanding of these concepts when working with
color in code.

Color models
To understand the nature of something, it can be helpful to create a visual
representation of the subject. In fact, humans tend to do this quite often,
from scribbling notes in lectures, to drawing charts and maps to explain
specific datasets. We do this because many of us are visual learners, and
seeing something is different than hearing it. Throughout history, artists
and scientists have depicted the color spectrum in all sorts of different
models, with the goal of turning the abstract concept of the color
spectrum into something comprehensible.

A color model is a visualization that depicts the color spectrum as a
multidimensional model. Most modern color models have 3 dimensions
(like RGB), and can therefore be depicted as 3D shapes, while other
models have more dimensions (like CMYK). In the following, we will look
at the RGB, HSV, and HSL color models, which are all prevalent in current
digital design tools and programming languages. These color models all
use the same RGB primary colors, which makes them good examples of
how color models can visualize the same color spectrum in widely
different dimensions.

RGB is a color model with three dimensions – red, green, and blue – that
are mixed to produce a specific color. When defining colors in these
dimensions, one has to know the sequence of colors in the color spectrum,
e.g. that a mix of 100% red and green produces yellow. The RGB color
model is often depicted as a cube by mapping the red, green, and blue
dimensions onto the x, y, and z axis in 3D space. This is illustrated in the
interactive example below, where all possible color mixes are represented
within the bounds of the cube.

The RGB color model is not an especially intuitive model for creating
colors in code. While you might be able to guess the combination of
values to use for some colors such as yellow (equal amounts of red and
green) or the red color used on Coca-Cola bottles (lots of red with a little
bit of blue), less pure colors are much harder to guess in this color model.
What values would you use for a dark purple? How about finding the
complimentary color for cyan? If you cannot find the answer, it is because
humans do not think about colors as mixes of red, green, and blue lights.

HSV is a cylindrical color model that remaps the RGB primary colors into
dimensions that are easier for humans to understand. Like the Munsell
Color System, these dimensions are hue, saturation, and value.

• Hue specifies the angle of the color on the RGB color circle. A 0° hue
results in red, 120° results in green, and 240° results in blue.

• Saturation controls the amount of color used. A color with 100%
saturation will be the purest color possible, while 0% saturation yields
grayscale.

• Value controls the brightness of the color. A color with 0% brightness is
pure black while a color with 100% brightness has no black mixed into
the color. Because this dimension is often referred to as brightness, the
HSV color model is sometimes called HSB, including in P5.js.

It is important to note that the three dimensions of the HSV color model
are interdependent. If the value dimension of a color is set to 0%, the
amount of hue and saturation does not matter as the color will be black.
Likewise, if the saturation of a color is set to 0%, the hue does not matter
as there is no color used. Because the hue dimension is circular, the HSV
color model is best depicted as a cylinder. This is illustrated in the
interactive example below, where all possible color mixes are represented
within the bounds of the cylinder.

HSL is another cylindrical color model that shares two dimensions with
HSV, while replacing the value dimension with a lightness dimension.

• Hue specifies the angle of the color on the RGB color circle, exactly like
HSV.

• Saturation controls the purity of the color, exactly like HSV.

• Lightness controls the luminosity of the color. This dimension is different
from the HSV value dimension in that the purest color is positioned
midway between black and white ends of the scale. A color with 0%
lightness is black, 50% is the purest color possible, and 100% is white.

Even though the saturation dimension theoretically is similar between the
two color models (controlling how much pure color is used), the resulting
saturation scales differ between the models caused by the brightness to
lightness remapping. Like HSV, the HSL color model is best depicted as a
cylinder, which is illustrated in the interactive example below.

There are plenty of other ways to visualize the color spectrum in a multi-
dimensional space. The CMYK color model has four dimensions, which
means that one has to use either animation or multiple 3D shapes to
visualize the states of the model. Another color model called CIELAB is
modeled on the opponent-process theory of human perception with two of
three dimensions representing scales from red to green and yellow to blue
– two opponent color pairs that humans cannot perceive simultaneously.

Color spaces
Color models provide for a good way to visualize the color spectrum, but
they are inadequate when it comes to defining and displaying colors on
computer screens. To explain this, let us assume that you own a laptop
computer as well as a larger, external screen for your home office. Now, let
us also assume that you are running a P5.js sketch showing a yellow

The CIE chromaticity diagram showing the color
gamuts of the Adobe RGB (1998) and sRGB color
spaces.

ellipse on both screens. In a world without color spaces, these two screens
would turn on their red and green subpixels and be done with it. However,
what if your larger screen has more expensive lights that look wildly
different from the ones on your laptop screen? This would result in two
very different kinds of yellow. This is the problem that color spaces set out
to solve.

This chromaticity
diagram was created
by the International
Commission on
Illumination (CIE). It
was based on a
number of vision
experiments on
human subjects in
the 1930’s, and it
accurately defines the
relationship between
the wavelength of a
color and the
perceived effect on
the human eye. This
diagram – which is
also a color space
called CIEXYZ – is

very important as all modern color spaces define their absolute range of
colors (called a color gamut) in relation to this color space. The two
triangles inside the curved shape indicate the color gamuts of two popular
color spaces: sRGB and Adobe RGB (1998). The corners of each triangle
define the primary colors of each color gamut, and you might notice that
while the two color spaces share the same red and blue primaries, the

green primary color is different between the two. To put it another way, a
primary color only has absolute meaning when it refers to a specific color
space. In our example from above, color spaces allow your two computer
monitors to show an identical yellow color by following a standard
process: First, it converts the yellow color from the color space of the P5
sketch to the CIEXYZ color space (also called a reference color space).
Then, because every monitor knows the exact color of their primary lights
in relation to the CIEXYZ color space, it can determine the amount of
primary lights to mix.

The sRGB color space has the smallest color gamut of the two color
spaces, which means that it covers the smallest range of colors. It was
created for use by computer monitors, and the smaller gamut reflects the
exact colors of the primary lights in most HDTVs and computer monitors.
This also means that the sRGB color space is easy to adapt for hardware
manufacturers, which is why it has become the most widely used color
space for digital files. Whenever you come across a color or an image on a
website, it is most likely an sRGB color. Even though sRGB is a great color
space for the range of colors that can be shown on a screen, the color
gamut is not wide enough to support colors printed in ink – especially in
the green-blue parts of the spectrum. The Adobe RGB (1998) color space
has a much wider RGB color gamut that was carefully chosen to cover
most of the colors that CMYK printers can produce. This also means that a
specific set of colors can look very different depending on the color space
it adheres to, as demonstrated in the example below that shows the same
RGB values in the two color spaces. Notice how the last two green colors
look identical in the Adobe RGB (1998) color space, because most screens
cannot display the green primary color of the wider color gamut.

sRGB

Adobe RGB (1998)

A simulation of how most monitors render the two color spaces. The last two colors
in the Adobe RGB (1998) color space will look identical.

It is important to note that although color models are abstract
mathematical concepts, it is impossible to visualize a color model without
an accompanying color space. The RGB, HSV, and HSL color model
examples from above are all visualized within the sRGB color space,
because that is the default color space of the internet.

Color profiles
A digital image can adhere to a specific color space by embedding a color
profile in its metadata. This tells any program that wants to read the
image that the pixel values are stated according to a particular color
space, and images without a color profile are often assumed to be sRGB.
Color profiles are important in order to correctly reproduce identical colors
across multiple devices, and you will often see professional printing
services require image files to be set to a specific color space (most likely
Adobe RGB (1998) or ProPhoto RGB, a color space with a very wide color
gamut). This assures that the colors in your image are not interpreted to
be the wrong color space. If you have ever pasted an image into an
existing Photoshop project only to have the colors look wrong, you have
been a victim of this. As an example, if you paste an image with an Adobe

RGB (1998) profile into a Photoshop file with a sRGB profile, Photoshop
will interpret the pixel values to be within the smaller color gamut,
changing the colors of your pasted image. Because of this, most digital
design tools have built-in commands to convert between color spaces, and
Photoshop actually does a good job of alerting the user before
reinterpreting color profiles. Conversion between color spaces is
especially beneficial for designers wanting to design print products in
code, as their digital assets will need to be converted from sRGB to a
print-specific color profile before printing.

The left-hand side of this Paul Klee painting was correctly converted from Adobe
RGB (1998) to sRGB, while the right-hand side wrongly reinterpreted the colors
into sRGB without conversion. ©

If a digital image uses a color profile with a wide color gamut, it is almost

guaranteed to lose colors on most screens because most screens can only
show colors within the sRGB gamut. However, many newer screens
support wider color gamuts. The Apple iMac retina screen uses a RGB
color space called DCI-P3 with a color gamut that spans about the same
range as Adobe RGB (1998), but it includes more red-yellow colors and
excludes some green-blue colors. To highlight the complexity of color
management, some browsers running on retina computers may
oversaturate the colors of sRGB images without color profiles, while other
browsers will correctly convert the sRGB pixel values into DCI-P3.
Although this book will not dive further into the complicated aspects of
color management, there are plenty of good resources out there for the
interested reader.

Color in P5.js
As a browser-based JavaScript library, all color values in P5.js adhere to
sRGB, the standard color space for the internet. You can define these
colors in all three of the aforementioned color models: RGB, HSV (called
HSB), and HSL. Passing color values to the fill() and stroke()

functions is the main way to color shapes in P5.js. This sets the current fill
and stroke colors for all subsequent shapes, and this setting is
remembered until you fill() or stroke() again, or disable the stroke or
fill entirely with the noStroke() or noFill() functions.

The default color model in P5.js is RGB, which means that the fill()

and stroke() functions expect three numbers between 0 and 255,
indicating the amount of red, green, and blue to use for the color. The
reason behind this specific range is that a maximum of 256 values can be
stored in a single byte (8 bits), allowing each RGB color to only take up 24
bits. Even though 256 different amounts of red, green, and blue might not
sound like much, this can produce 16,777,216 distinct colors which is
actually much more than what the human eye can perceive.

https://abookapart.com/products/making-sense-of-color-management

noStroke();
fill(210, 70, 50);
ellipse(150, height/2, 200, 200);

fill(245, 225, 50);
ellipse(300, height/2, 200, 200);

fill(50, 120, 170);
ellipse(450, height/2, 200, 200);

P5.js also allows you to use an alternative hexadecimal syntax known from
web design for specifying colors in the RGB color model. Instead of using
three numbers, the hex syntax uses a hashtag followed by a six-character
string to represent the primary color values. Each primary color has two
characters in this string, using the numbers 0-9 to represent zero to nine
and the letters A-F to represent ten to fifteen. With 16 variations per
character, each primary color can therefore specify a value between 0 and
255 in just two characters.

noStroke();
fill("#d24632");
ellipse(150, height/2, 200, 200);

fill("#f5e132");
ellipse(300, height/2, 200, 200);

fill("#3278aa");
ellipse(450, height/2, 200, 200);

The colorMode() function in P5.js can be used to switch to another color
model, which means that the fill() and stroke() functions will expect
color ranges according to the new color model’s dimensions. The default

numerical ranges for HSV (called HSB in P5.js) and HSL are 0-360 for
hue (indicating an angle), and 0-100 for saturation and brightness/
lightness (indicating a percentage). The following code example uses both
the HSV and HSL color models to draw the three ellipses.

noStroke();
colorMode(HSB);
fill(7, 76, 82);
ellipse(150, height/2, 200, 200);

fill(54, 80, 96);
ellipse(300, height/2, 200, 200);

colorMode(HSL);
fill(205, 55, 42);
ellipse(450, height/2, 200, 200);

It is also possible to change the default numerical ranges for each color
model. This can be done by passing in three additional numbers when
calling the colorMode() function, as demonstrated below where all three
dimensions of the HSV color model are set to 0-1 ranges.

noStroke();
colorMode(HSB, 1, 1, 1);
fill(0.0195, 0.76, 0.82);
ellipse(150, height/2, 200, 200);

fill(0.15, 0.80, 0.96);
ellipse(300, height/2, 200, 200);

fill(0.569, 0.71, 0.67);
ellipse(450, height/2, 200, 200);

In the following chapters, we will examine a range of different techniques
for combining colors programmatically in P5.js. Many of these examples
will use the HSL color model, as it is an intuitive way to navigate the color
spectrum.

Color

Perceptually uniform color spaces
“In visual perception a color is almost never seen as it really
is - as it physically is. This fact makes color the most relative
medium in art.”
Josef Albers (1963), Interaction of Color

If you rounded up a group of graphic designers and asked them to define
the concept of perceptually uniform color spaces, there is a good chance
that none of them would know what to say. On the surface, perceptual
uniformity is somewhat easy to explain: These color spaces are human-
friendly alternatives to color spaces such as sRGB, and they are incredibly
helpful for designers working in code. Despite of this, they can feel
daunting to use in programmatic designs. Perceptually uniform color
spaces have roots in scientific color theory, and this community does little
to make them accessible to a larger audience. In this chapter, we will look
at the concept of perceptually uniform color spaces, and answer some
common questions related to them: What are they? Why do we need
them? How can we use them in code?

What is wrong with sRGB?
Let us pretend that you want to design a poster with ten squares changing
in color from green to blue in equal steps. “Easy”, you might say, and whip
up some code that creates an equal change in hue between each

The CIE chromaticity diagram showing
wavelength of major colors in the color spectrum.

rectangle. Convinced that the result will be a nice looking gradient, you
are surprised to see the following output after running the code.

You might notice something odd about this colored strip of rectangles.
Although the colors change from green to blue, they appear to change a
lot more towards the end of the strip. The green colors look almost
identical, while the blue colors are more diverse. It also has a lot of
variation in the lightness of the colors, with the cyan colors in the middle
looking brighter than the blue colors. This happens because the default
sRGB color space (and any color model built on it like HSV and HSL) is
irregular, which means that even though the rectangles have evenly
spaced hue values, the corresponding effect is not linear to the human
eye.

To explain why, we
need to look at the
chromaticity diagram
we briefly discussed
in the last chapter.
This diagram is the
result of extensive
scientific experiments
in the 1930’s, and it
plots the visible color
spectrum onto a scale
based on the human
vision. The first thing
you might notice is
that the diagram has
a lot of green in it.
The blue numbers
displayed on the edge

of the color spectrum show the wavelength of the corresponding color,
and you will notice that the colors from around 520nm to 560nm all look
green. But if you take another 40nm range, e.g. 460nm to 500nm, it
includes a much broader set of colors between blue, cyan, and green. This
explains why a majority of the rectangles in our design above are green,
and why we see a sudden shift towards blue at the end of the scale:
moving linearly through the hues will look disproportionate to the eye. If
we want to operate with color as it relates to the human vision, we need a
color space built on these human measurements, and that is what
perceptually uniform color spaces are.

The following rectangles also have an even distribution in hues, but this
time the colors were created with a perceptually uniform color space.
Notice how the colors remain constant in their lightness, and that the hues
are evenly distributed to make a linear color gradient.

Why do we need perceptually uniform color spaces? Because working
with color in code is different than working with color in traditional design
tools. Traditional tools encourage designers to think in manual workflows
with the color picker as the primary way of choosing color combinations.
In this scenario, designers use their eyes to decide whether a color is right
or wrong, and the RGB values play no role in this decision. Code is
different, because programming languages encourage designers to think
about colors as numbers or positions within the chosen color model. This
skill is hard to learn if the numbers do not correspond with the output.
Perceptually uniform color spaces allow us to align numbers in our code
with the visual effect perceived in our viewers.

In some cases, perceptually uniformity is essential. A simple example like
wanting to choose a random color to be readable against a dark
background can be hard in irregular color spaces, because colors with the
same lightness or brightness vary greatly in how bright they appear (blue

and yellow both have 100% brightness in HSV, but blue is much darker
than yellow). One would need to do all sorts of calculation based on the
chosen hue to make the random colors equally bright.

If designers are not aware of this, it can even lead to misleading designs. A
good example is the use of continuous color scales in data visualization.
For certain map types, designers use a gradient to color geographic areas
to reflect the value of a data point, and the user can compare colors
between regions to get a sense of the data. If the designer created the
color scale in a regular color space, the perceived colors will be different
from the data points reflected in the color values. To have the design show
the actual data, a perceptually uniform color space is required.

A better solution
The International Commission on Illumination (CIE) created the
aforementioned chromaticity diagram in the 1930’s to solve this problem.
This diagram is actually a 2D view of a color space called CIEXYZ, which
in the 1970’s was replaced with the slightly improved CIELUV and CIELAB
color spaces. It is hard to describe how these color spaces work without
going into the underlying math, but they generally allow you to specify
color, not in light mixes, but in dimensions that relate more to the human
vision, and they do sophisticated color transformations to ensure that
these dimensions reflect how the human vision works. For example, the
CIELUV color space has two dimensions – u and v – that represent color
scales from red to green and yellow to blue. To create a color in the
CIELUV color space, one has to define the lightness of the color (l),
whether it is reddish or greenish (u), and whether it is yellowish or bluish
(v). Similarly, humans compute signals from our retina cones via the
opponent process model, which makes it impossible to see reddish-green
or yellowish-blue colors.

Even though these color spaces are based on human perception, they are

not intuitive when working in code. Like a RGB color space, it can be hard
to guess which LUV numbers are required to create e.g. a dark purple or
bright cyan. Thankfully, perceptually uniform color spaces can also remap
their dimensions in different color models, so designers can work with
more intuitive dimensions, while keeping the perceptual uniformity.

HSLuv
The HSLuv project is one of the more recent attempts at making these
color spaces more intuitive. It allows you to use the CIELUV color space in
the same dimensions as the HSL color model. Referred to as a human-
friendly HSL, the original code was written in the Haxe programming
language, but the project is now implemented in most of the popular
programming languages, including JavaScript.

Before diving into the code-specifics, it is important to understand how
HSLuv differs from HSL. HSLuv allows you to define a color based on
three dimensions – hue, saturation, and lightness – but contrary to a HSL
color model based on sRGB, colors that share the same value for a
dimension are guaranteed to look similar. Two colors with an identical
lightness value will look equally bright, and two colors with the same
saturation will have the same perceived color purity. Like HSL, the
saturation and lightness dimension is represented as a percentage
between 0 and 100 , but in HSLuv those percentages reflect the
perceived color mixing. A gray color with a lightness of 50 is guaranteed
to be mid-gray.

Even though it is not a built-in color mode, HSLuv works great with P5.js.
To use the library, you first need to download the latest HSLuv release, and
then include the library file in your HTML file. This makes the HSLuv color
conversion functions accessible in your sketch.

http://www.hsluv.org/
https://github.com/hsluv/hsluv/releases

<script src="p5.min.js" type="text/javascript"></script>
<script src="hsluv.min.js" type="text/javascript"></script>

Every implementation of HSLuv includes four functions that can be used
to convert between HSLuv and RGB. We can use one of these functions –
hsluvToRgb() – to convert the HSLuv color values into RGB values that
the fill() and stroke() functions can understand. The hsluvToRgb()

function expects an array with three values – the desired hue, saturation,
and lightness of the color – and returns another array with RGB values in
the range of 0 to 1 . Because P5.js expects RGB values between 0 and
255 , we need to multiply the array values to scale them up. This boils
down to two lines of code, which is illustrated in the example below.

// First convert the HSLuv values to a RGB array
const rgb = hsluv.hsluvToRgb([0, 50, 50]);

// Then use the RGB values in a scale of 0-255
fill(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);

This means that every time you have to create a perceptually uniform color
for the fill() or stroke() function, you need an extra line of code to
handle the HSLuv to RGB conversion. This can be prevented by creating
small helper functions that wrap these two lines of code.

function fillHsluv(h, s, l) {
const rgb = hsluv.hsluvToRgb([h, s, l]);
fill(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);

}

function strokeHsluv(h, s, l) {
const rgb = hsluv.hsluvToRgb([h, s, l]);
stroke(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);

}

You can now use these two functions instead of the built-in fill and stroke
functions. It is essentially a way to make your own colorMode in P5.js
without using the colorMode function. Below is a quick example to
demonstrate how to use them.

noStroke();
fillHsluv(0, 100, 50);
ellipse(150, height/2, 200, 200);

noFill();
strokeWeight(5);
strokeHsluv(120, 100, 50);
ellipse(300, height/2, 200, 200);

noStroke();
fillHsluv(240, 100, 50);
ellipse(450, height/2, 200, 200);

Now that we have the ability to use a perceptually uniform color space in
P5.js, we can replicate the rectangle gradient experiment from the
beginning of the chapter. The following example uses the same color
values to draw a strip of rectangles using both HSL and HSLuv. Notice
how the colors in the latter example look equally bright.

const w = width / 10;

colorMode(HSL);
for(let i = 0; i < numRects; i++) {

fill(i * 18, 100, 50);
rect(i * w, 0, w, height/2);

}

colorMode(RGB);
translate(0, height/2);
for(let i = 0; i < numRects; i++) {

fillHsluv(i * 18, 100, 50);
rect(i * w, 0, w, height/2);

}

We can also use these new functions to choose random colors that are
readable against a specific background color. The example below shows a
line of text in random colors using both HSL and HSLuv. Notice how the
first example sometimes use very bright yellows even though the lightness
is constant. The latter example that uses the perceptually uniform color
space does not have this problem.

const fontSize = 30;
textSize(fontSize);

translate(50, 50 + fontSize);
colorMode(HSL);
for(let i = 0; i < 10; i++) {

fill(random(360), 100, 50);
text("Can you read this line of text?", 0, i * fontSize);

}

colorMode(RGB);
translate(0, 340);
for(let i = 0; i < 10; i++) {

fillHsluv(random(360), 100, 50);
text("Can you read this line of text?", 0, i * fontSize);

}

Even though P5.js does not understand the concept of perceptually
uniform color spaces, this chapter has demonstrated how to use the
HSLuv JavaScript library to convert from a perceptually uniform color
space into the sRGB color space that P5.js uses. In the coming chapters,
we will use this technique to procedurally generate color schemes and use
them to create dynamic designs in P5.js

Color

Color schemes
Effective use of color is vital to the success of any design project. Imagine
a yellow Coca-Cola logo or the Mona Lisa painted in a saturated pink, and
you might realize that the choice of colors has a drastic impact on any
design. This does not mean that colors always have a clear semiotic
purpose. While it might be obvious why stop signs are painted red (alert,
danger, there will be blood if you ignore this), most color schemes are
harder to interpret so directly. This leaves us with an art form that, like
graphic design in general, is both objective and subjective. It is objectively
a bad idea to use yellow text on a white background, because the lack of
contrast makes the text hard to read. Likewise, one should not use red and
green as primary colors in a data visualization when approximately 8% of
men world-wide suffer from red-green color blindness 16 . It is important
to know these rules when working with color, as they enable designers to
create graphics that are accessible to a majority of users. However, to
master the art of color combination, designers also have to know how
color is used in different cultures and contexts, observe current trends in
the arts, and develop a personal style based on this knowledge. Because of
this, many authors have struggled to create good ways of teaching
designers how to think about color combination.

One popular method is to create categories of color schemes named after
the relationship between the hues of the colors in each scheme. These
categories are given names such as complementary (two colors with
opposite hues), triadic (three colors spaced evenly across the color
spectrum), and tetradic (four colors spaced evenly across the color
spectrum). Authors also include a more hybrid set of categories for color
schemes that do not fit in any of the former categories. One explanation
for the popularity of this approach might be that teachers can visualize the
categories by placing shapes on the color circle, and students can change
the dimensions of these shapes to create variations of the color schemes.
This technique is described in many books about graphic design, and you
will often encounter these terms in design critiques.

A triadic color scheme with three evenly spaced hues .

A tetradic color scheme with four evenly spaced hues.

Even though this systematic approach might seem like a perfect fit for this
book, I believe the method to be highly problematic. One problem is that
color schemes within a single category do not have any coherent visual
effect. Triadic and tetradic color schemes can look remarkably similar,
even identical, if the spacing between hues is tweaked slightly. Also, the
visual effect of a pure triadic color scheme in the sRGB color space is very
different from the same color scheme in CIELUV. Worst of all, this
approach tends to ignore the saturation and lightness dimensions, which
are left for designers to figure out for themselves. The three color schemes
below all have the same hue values, but produce wildly different visual
effects by changing their saturation and lightness values. A color theory
that ignores two-thirds of the color dimensions will not help designers
make better decisions.

These three triadic colors schemes have the same hue values, and look identical when
plotted on the color circle. The term 'triadic' does not help to describe their distinct visual

effects.

Instead, this chapter will present a color theory built around the three
dimensions of the HSL color model. By focusing on the hue, saturation,
and lightness of colors – and how these dimensions interact – designers
can learn how changes in code are reflected visually, and compose
interesting color combinations from this knowledge. In the following, we
will go through these dimensions in reverse order, using the HSLuv library
to ensure that changes in our code reflect actual perceptual changes in
color.

Lightness
The lightness of a color determines how much black is mixed into the
color (See Color Models and Color Spaces). The contrast of light and dark
is a significant one, and even though we can create contrasts between
colors by manipulating any of the HSL dimensions, the term ‘contrast’
most times refers to changes in lightness. The examples below
demonstrate the effect of both a low-contrast and a high-contrast color
scheme. The first example appears soft and light, which is a result of the
high lightness values with small differences in lightness between each
color. The second example appears bolder and has a significant positive/
negative effect caused by the large differences in lightness for
neighbouring colors.

A color scheme with low contrast

fillHsluv(0, 0, 90);
rect(0, 0, width, height);
fillHsluv(0, 0, 85);
rect(145, 95, 375, 200);
fillHsluv(0, 0, 95);
rect(85, 155, 375, 200);

A color scheme with high contrast

fillHsluv(0, 0, 0);
rect(0, 0, width, height);
fillHsluv(0, 0, 50);
rect(145, 95, 375, 200);
fillHsluv(0, 0, 100);
rect(85, 155, 375, 200);

Muriel Cooper was a highly influential graphic designer who did important
work in early digital design and user interface design. As co-founder of the
MIT Media Lab and Design Director of MIT Press, she oversaw production
of more than 500 books, and she is widely known for her black and white
designs. Below are two of her more famous designs that rely solely on the
lightness dimension.

The logo for MIT Press © .

Cover design for a book on the Bauhaus published by MIT Press © .

Choosing a proper contrast is especially important when working with
text, as readability is determined by the contrast between text and
background. The World Wide Web Consortium recommends in their Web
Content Accessibility Guidelines that body text should have a contrast
ratio of at least 4.5:1 (or lower than 0.222 as a fraction), and they
provide the following formula to calculate this contrast ratio for two
lightness values.

const contrastRatio = (l1 + 0.05) / (l2 + 0.05);

This formula requires the two lightness values to be provided in relative

https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html

luminance, which refers to the Y dimension in the CIEXYZ color space. To
calculate the W3C contrast ratio for a HSLuv color, we therefore first need
to convert the lightness value into the CIEXYZ color space, and then use
the formula above to calculate the contrast ratio. This is demonstrated in
the code example below, where the contrastRatio() function can
calculate this contrast ratio based on two HSLuv lightness values.

function lightnessToLuminance(l) {
if (l <= 8) {

return 1.0 * l / 903.2962962;
} else {

return 1.0 * Math.pow((l + 16) / 116, 3);
}

}

function contrastRatio(l1, l2) {
l1 = lightnessToLuminance(l1);
l2 = lightnessToLuminance(l2);
return (l1 + 0.05) / (l2 + 0.05);

}

function setup() {
console.log(contrastRatio(40, 70)); // BAD!

0.35521707859730733
console.log(contrastRatio(40, 90)); // GOOD!

0.19988073069469958
}

Lightness plays an important role in any color scheme, both when it
comes to accessibility and aesthetics. Like the previous exercises in this
book, it is recommended that aspiring designers practice designing only in
black and white to learn how to establish proper contrast in their designs.

‘What does it look like in black and white’ is a good question to ask if a
design seems cluttered, as it can reveal a lack of contrast between shapes
in the design.

Saturation
The saturation of a color controls the purity of the color from grayscale to
full color (See Color Models and Color Spaces). You can use this
dimension to create color combinations that range from the very muted to
the extremely bright. The two examples below use the same lightness and
hue values, and differ only in their saturation values.

A desaturated color scheme

fillHsluv(40, 30, 65);
rect(0, 0, width, height);
fillHsluv(10, 40, 40);
rect(145, 95, 375, 200);
fillHsluv(75, 50, 85);
rect(85, 155, 375, 200);

A saturated color scheme

fillHsluv(40, 100, 65);
rect(0, 0, width, height);
fillHsluv(10, 100, 40);
rect(145, 95, 375, 200);
fillHsluv(75, 100, 85);
rect(85, 155, 375, 200);

In user interface design, saturation is often used to distinguish passive
and active interface components. Apple’s iOS operating system utilizes a
desaturated color scheme for general interface elements, but fully

saturated colors are used for key actions such as active toggle buttons and
app notifications. This makes it possible for users to quickly interpret the
state of the interface and notice when a new app event happened, like an
LED lighting up on an old switchboard.

The control center in iOS 11 uses a monochrome color scheme but fully saturated
colors for active buttons. © .

A good analogy to consider when working with saturations of color is the
way many countries have distinct ways of painting houses in their cities.
The saturations of these paints can vary greatly, and although these colors
do not have any inherent meaning, they do say something about the time,
place, and people. Imagine a small village in Japan with its muted,
desaturated colors, and compare this to a place like Mexico, where houses
are painted in very pure, saturated colors. These colors reflect the culture

around them, and you should consider your content in the same way: Does
it demand lively colors or a subdued, modernist scheme? The saturation of
your colors is the key to this.

A Japanese town in desaturated colors. Image by 663h .

https://ja.wikipedia.org/wiki/%E5%88%A9%E7%94%A8%E8%80%85:663highland

Houses in Mexico painted in saturated colors.

Hue
The hue dimension determines which actual color to show as represented
by color names such as red, green, and blue (See Color Models and Color
Spaces). As mentioned in a previous chapter, there is no coherent theory
on which hue combinations produce harmonic results. Although many
have tried, it is impossible to make a generalized theory about such a
thing. 17 However, it can be beneficial to draw some conclusions from how
hue combinations exist in the real world.

In nature, we often see small hue differences in the red-green parts of the
color spectrum. In the spring, trees and plants will take on an almost
monochrome bright green color scheme, but as the season turns to fall,
these colors will spread slightly into a multitude of analogous colors of

green, yellow, and red. You will often find such hue combinations in design
products looking to evoke feelings of tranquility or peace, such as yoga
studios, organic food products, and wedding invitations. A different type
of analogous color scheme can be found in photos from outer space,
where brighter colors in the blue/green parts of the spectrum create an
almost alien effect. These colors are often used in technology or software
products that want to appear streamlined and deliberately manufactured.
It is not a coincidence that Apple and Microsoft stores look like the inside
of a spaceship: They are designed to make customers feel like they
entered a state-of-the-art science lab, because it makes them accept the
higher price point. These are two types of color schemes with colors close
to each other on the spectrum, but with very different visual effects.

Analogous colors in nature.

Analogous colors in space.

fillHsluv(75, 95, 70);
rect(0, 0, width, height);
fillHsluv(35, 90, 40);
rect(145, 95, 375, 200);
fillHsluv(55, 100, 80);
rect(85, 155, 375, 200);

fillHsluv(270, 65, 15);
rect(0, 0, width, height);
fillHsluv(295, 70, 55);
rect(145, 95, 375, 200);
fillHsluv(278, 100, 73);
rect(85, 155, 375, 200);

A more profound effect happens when the distance between hues is

increased. However, this statement can be deceiving. Although colors
close to each other have a nice, analogous effect, colors on opposite sides
of the color circle do not necessarily have the most pronounced hue
contrast. The visual effect of two hues cannot be calculated by a simple
formula, as much is determined by the actual hues chosen, how they are
used in a design, as well as their saturation and lightness values.
Nevertheless, it important to consider the spacing of hues like any other
relationship in the design process: Does my content demand flat,
monochrome colors or a varied burst of the color palette?

.

Low hue contrast.

Medium hue contrast.

High hue contrast.

We cannot discuss the hue dimension without mentioning the various
types of color blindness that makes it hard for many to distinguish certain
hues. The most prevalent color blindness is red-green, which makes it
hard to distinguish red and green hues from each other. If the green retina
cone is severely damaged, some people can only see the color blue. A
more infrequent type of color blindness is blue-yellow, where blue, yellow,
and green is indistinguishable. Also, in the rarest of cases, some people
have complete monochrome vision. Up to 8% of men and 0.5% of women
worldwide suffer from color blindness 18 . This means that a color scheme,
especially one needed for instructional use, should not rely solely on hues
to create color contrasts. Lightness should always be considered, as the
ability to distinguish colors by contrast is shared by almost anyone who
are not vision-impaired.

Normal color vision.

Mild red-green blindness.

Severe red-green blindness.

Color scheme examples
These three dimensions of color can inspire a lifetime of experiments with
color combination. While some color schemes consist of colors that only
vary in one dimension (such as some monochrome designs), most color
schemes combine changes in hue, saturation, and lightness to achieve a
palette of colors. The Brooklyn-based chocolate producer Mast Brothers is

famous for their colorful packaging designs where colored patterns are
used to denote the flavor profile of the chocolate. These patterns provide a
great case study of how the three dimensions of color can be manipulated
to create different expressions.

Smoke © .

Mint © .

Brooklyn Blend © .

The first pattern is for a dark chocolate made with smoked beans, and the
designer has chosen a high-contrast, monochrome color scheme with
wavelike shapes to imply smoke floating in the air. Notice how these colors
do not seem ‘natural’ per se, but are chosen to convey the taste of the
product. The second pattern is for a dark chocolate with mint leaves and
features a gradient of colors changing in hue and lightness from dark
green to bright yellow with a constant saturation in the 50’s. The gradient
provides for an interesting way of visualizing the two distinct flavors that
despite their different characteristics blend well together. The final pattern
features a four-color scheme on top of a lighter background where
saturated colors with large hue contrasts are used to color paint-like
shapes. A playful and creative design for the borough of Brooklyn.

Procedural color schemes
So far we have manually hard-coded color values to create color schemes.
To really take advantage of the fact that we are using code to generate
these designs, we should investigate how to procedurally generate these
colors. That is, use a loop to create a lot of colors in just a few lines of
code. This means looking at the color() function and how to dynamically
create color objects with a loop.

The color() function in P5.js can be used to create a reusable color
object, that can be used in the fill() and stroke() functions again and
again. This means that, rather than having the same color values scattered
throughout the code, we can assign a single color object to a variable on
top of our code, and refer to this variable whenever the color needs to be
used. Consider the following code where the same red color is used
multiple times.

// First use of red

fill(225, 35, 35);
rect(50, 50, 200, 180);

fill(40, 185, 155);
rect(200, 100, 200, 180);

// Second use of red
fill(225, 35, 35);
rect(350, 150, 200, 180);

This example can be rewritten using the color() function, so the color
values appear only once in the code.

// Define the color object once
const red = color(225, 35, 35);
// Use it here
fill(red);
rect(50, 50, 200, 180);

fill(40, 185, 155);
rect(200, 100, 200, 180);

// Use it here
fill(red);
rect(350, 150, 200, 180);

To use the color() function with HSLuv values, we need to create a
small function that performs the HSLuv to RGB conversion before
creating the color object. Besides the use of the color() function, this
function is identical to the fillHSluv() and strokeHsluv() functions
from the last chapter. Remember that you must include the HSLuv
JavaScript file for this to work.

function colorHsluv(h, s, l) {

const rgb = hsluv.hsluvToRgb([h, s, l]);
return color(rgb[0] * 255, rgb[1] * 255, rgb[2] * 255);

}

const red = colorHsluv(225, 35, 35);
fill(red);

Now, what if we want to use multiple colors in a design? It would make
sense to just add more variables to the code above. Although that is
perfectly fine for just a few colors, it does not make sense for a large
number of colors. In this scenario, it is more sensible to use an array that
allows for colors to be added and removed without introducing new
variables. The code below stores three colors in an array and uses them to
draw a color scheme.

const colors = [
colorHsluv(40, 100, 65),
colorHsluv(10, 100, 40),
colorHsluv(75, 100, 85)

];

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);
rect(85, 155, 375, 200);

Finally, we can use a loop to dynamically create colors objects. We do this
by using an empty array, and pushing a new color object to the array on
every loop iteration. This examples uses the random() function to ensure
that the colors are different between each run of the loop.

// Start with empty array
const colors = [];
for(let i = 0; i < 3; i++) {
// Push new color with random hue, saturation, and lightness into
array every time

colors.push(
colorHsluv(

random(360),
random(100),
random(100)

)
)

}

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);
rect(85, 155, 375, 200);

With all these concepts in place, we are ready to procedurally generate
color schemes. One strategy – which is probably also the simplest – is to
stick with random() , and create different types of color schemes by
changing the values passed to the random() function.

Random lightness.

const colors = [];
for(let i = 0; i < 3; i++) {

colors.push(
colorHsluv(240, 20, random(100))

)
}

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);
rect(85, 155, 375, 200);

Random hue.

const colors = [];
for(let i = 0; i < 3; i++) {

colors.push(
colorHsluv(random(360), 90, 50)

)
}

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);
rect(85, 155, 375, 200);

However, there is a good chance that the random() function will choose
numbers close to each other, resulting in very similar colors. A more
powerful strategy is to use the loop’s incrementing i variable to calculate
the values passed to the color() function. This technique is identical to
what was demonstrated in the Procedural Shapes chapter, but this time
we use it for color values and not x and y positions. The example below
uses i to create a monochrome color scheme with lightness values of
20 , 50 , and 80 , while keeping the hue and saturation constant.

const colors = [];
for(let i = 0; i < 3; i++) {

colors.push(
colorHsluv(240, 100, 20 + (i * 30))

)
}

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);

Below, the same technique is used in all dimensions. Notice how the hue
values are incrementing while the saturation and lightness values are
decrementing. The final result is a color scheme where the background is
light and saturated but the front colors are darker and less saturated.

const colors = [];
for(let i = 0; i < 3; i++) {

colors.push(
colorHsluv(

100 + (i * 80),
100 - (i * 20),
90 - (i * 30)

)
)

}

fill(colors[0]);
rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);

fill(colors[2]);
rect(85, 155, 375, 200);

This code can become even more exciting by adding a few variables to
store the initial color values and how much they should change between
each iteration of the loop. Rather than hardcoding these variables, we can
use the random() function to pick different values every time the code
runs. Below is the same code run three times to produce three different
color schemes from the same algorithm. By changing the values passed to
the random() function, this code can produce a multitude of different
outputs.

// Which color values should we start with?
const startHue = random(0, 360);
const startSat = random(40, 100);
const startLig = random(0, 60);
// How much should each color change?
const changeHue = random(10, 120);
const changeSat = random(15, 40);
const changeLig = random(15, 40)
const colors = [];
for(let i = 0; i < 3; i++) {

colors.push(
colorHsluv(

// Use these values in the same algorithm as before
startHue + (i * changeHue),
startSat + (i * changeSat),
startLig + (i * changeLig)

)
)

}

fill(colors[0]);

rect(0, 0, width, height);
fill(colors[1]);
rect(145, 95, 375, 200);
fill(colors[2]);
rect(85, 155, 375, 200);

We cannot end this chapter without discussing another useful technique
for procedural color generation – the lerp() function – which can be
used to calculate transitions from one color to another. The lerp() function
has nothing to do with color, as it can be used to calculate any number
between two numbers. The function expects – besides the two range
numbers – an interpolation amount that is used to calculate the resulting
number. An interpolation amount of 0 will return the first number, 0.5

will return the number midway between the two numbers, and 1 will
return the second number.

lerp(0, 100, 0.2) // => 20
lerp(0, 50, 0.5) // => 25
lerp(0, 360, 0.8) // => 288

As a digital color consists of three numerical values, we can use this
function three times to calculate any color between two colors. It is
important to note that P5.js has a colorLerp() function that performs
this calculation in just one line of code. However, it only works with built-in
color modes and not the HSLuv library. The example below finds the color
midway between a dark saturated green and a lighter desaturated blue.

// Find hue between 120 and 240
const h = lerp(120, 240, 0.5);
// Find saturation between 95 and 40
const s = lerp(96, 40, 0.5);
// Find lightness between 31 and 74
const l = lerp(31, 74, 0.5);

const midwayColor = colorHsluv(h, s, l);

This technique is even more powerful when used in combination with a
loop, where the interpolation amount can be calculated by dividing i by
its largest possible value. Because this calculation is performed over and
over with an incrementing i value, it will produce interpolation amounts
between 0 and 1 with the number of steps being equal to how many
times the loop runs. This method is very useful when drawing gradients
that change from one color to another, like the example below where a
color swatch from Google's Material Design document is recreated.

https://material.io/guidelines/style/color.html

const boxh = height / 10;
for(let i = 0; i < 10; i++) {

const h = lerp(64, 22, i / 9);
const s = lerp(86, 90, i / 9);
const l = lerp(96, 56, i / 9);
fillHsluv(h, s, l);
rect(0, i * boxh, width, boxh);

}

A color swatch from Material Design © is recreated with the lerp() function in a loop.

This chapter introduced techniques to help designers explore the color
spectrum through the hue, saturation, and lightness dimensions of the
HSL color model. Using these techniques, designers can move away from
the 2D color solid known from the color picker, and approach color
combination by focusing on the relationship between colors in a 3D space.
Whether these techniques are used to quickly test different color
combinations, or built directly into digital design products, they are
another important tool for a designer wanting to treat design as a
systematic art.

Design a simple book cover for one of your favorite books. The design
should use basic or custom shapes, but no typography. Once you
have a design that conveys something in the storyline, consider which
type of color scheme is needed to support your design. Keep in mind
that a science fiction thriller might need very different colors than a
romance novel. Then, color the shapes in your design using the
techniques presented in this chapter. Rather than hard-coding the
colors, try to make a design where the color scheme is different every

EXERCISE

time the sketch runs. The challenge is to make a dynamic color
scheme with a consistent visual style.

1. Loeb Classical Library (1936) Aristotle’s Minor Works, p. 7. London

2. Gottschalk, H. B. (1964) The De Coloribus and Its Author, p. 59-85. Hermes 92. Bd..H. 1:
JSTOR. Web. 11 Jan. 2017

3. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 25. University of Chicago
Press

4. Sloane, Patricia (1967) Colour: Basic Principles New Directions, p. 28-30. Studio Vista

5. Lowengard, Sarah (2006) The Creation of Color in Eighteenth-Century Europe New York, para.
129-139, Columbia University Press)

6. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 48. University of Chicago
Press

7. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 175-176. University of
Chicago Press

8. Munsell, A.H (1912) A Pigment Color System and Notation, pp. 239. The American Journal of
Psychology. Vol. 23. University of Illinois Press

9. Itten, Johannes (1973) The Art of Color: the subjective experience and objective rationale of
color. Van Nostrand Reinhold

10. Albers, Josef (1963) Interaction of Color. Yale University

11. Droste, Magdalena (2002) Bauhaus, p. 25. Taschen

12. Itten, Johannes (1970) The Elements of Color, p. 33-44. Van Nostrand Reinhold

13. Itten, Johannes (1970) The Elements of Color, p. 26. Van Nostrand Reinhold

14. MacEvoy, Bruce. Color Vision Handprint : Colormaking Attributes. N.p., 1 Aug. 2015. Web. 11
Jan. 2017.

15. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

16. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

17. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

18. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

19. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design, p. 9. Arthur Niggli

20. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 2. The College
Mathematics Journal, Vol. 23

21. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 8-9. The College
Mathematics Journal, Vol. 23

22. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 10-11. The College
Mathematics Journal, Vol. 23

23. Malik, Peter (2017) P. Beatty III (P47): The Codex, Its Scribe, and Its Text, p. 31 - 38. New

Testament tools, studies and documents, Vol. 52

24. Fry, Stephen (2008) The Machine That Made Us. BBC UK

25. Apollonio, Umbro (2009) Futurist Manifestos, p. 104. Tate Publishing

26. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design. Arthur Niggli

27. Gerstner, Karl (1964) Designing Programmes. Arthur Niggli

28. https://www.nytco.com/who-we-are/culture/our-history/#2000-1971-timeline

29. Peter, Ian (2004) So, who really did invent the Internet?. The Internet History Project

30. https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/
2004/1231_grid_computi.php

31. Arnheim, Rudolf (1974) Art and Visual Perception, p. 8. University of California Press

32. Heider, G.M. (1977) More about Hull and Koffka, American Psychologist, 32(5), 383

33. Kroeger, Michael (2008) Conversations With Students, p. 27. Princeton Architectural Press

34. Design Systems International was co-founded by the author

Layout

A short history of geometric
composition
“Anyone willing to take the necessary trouble will find that,
with the aid of the grid system, he is better fitted to find a
solution to his design problems which is functional, logical
and also more aesthetically pleasing”
Joseph Müller-Brockmann 19

This part of the book focuses on principles of geometric composition and
how they can help designers create organized and beautiful layouts. The
term geometric composition covers a range of techniques used to guide
the positioning of elements in a design. This can be as simple as a ratio –
such as the rule of thirds (⅓) where the page is split into three equally
sized rectangles – or as sophisticated as a full grid system with multiple
columns and rows that control the alignment of text and other shapes.

A canvas divided into thirds.

A canvas divided into a grid.

Before diving into the specifics of how to use these concepts when
designing with code, we will first spend the rest of this chapter looking at
examples of geometric composition from art history. This history will pay
special attention to how new technology – first the printing press and then
the computer – played a significant role in developing these ideas.

A brief critical note on the subject – especially the idea of the golden ratio
– is necessary here. The golden ratio is best understood by imagining two
lines, one long and one short. When the ratio between the long and the
short line is the same as the ratio between the two lines combined and the
long line, this is the golden ratio. That number happens to be
1.61803398875 , and it can be used in all sorts of ways. For example, if you

create a rectangle where the width is 1.61803398875 times larger than
the height, it is called a golden rectangle. If you divide this rectangle into
smaller rectangles using the same golden ratio and draw a curve through
the corners of these smaller rectangles, you end up with a golden spiral.
The golden spiral is the most popular visualization of the golden ratio, but
do not get fooled by this complexity: The golden ratio is still just a number.

Long line Short line

This is the golden ratio

The golden ratio visualized as both a simple line segment and as a golden spiral.

Many of us remember hearing about the golden ratio in elementary school
or early art education, and the takeaway was likely something like this:
The golden ratio, or the divine proportion, is a number that is universally
agreed upon to be aesthetically pleasing when used to position elements

of a design within the canvas. Because it is especially beautiful to the
human eye, it has been used throughout history by artists to create
masterpieces. The concept of the golden ratio has been used to describe
everything from the architecture of the Parthenon in ancient Greece to the
paintings of Leonardo Da Vinci, and a search for “The golden ratio in art”
will reveal hundreds of papers claiming to have found the golden ratio in
pretty much any possible artifact.

The only problem is that most of this likely is pure fiction. Although there
are examples of artists who used the golden ratio extensively, many of
these conclusions are cases of a post-rationalization where authors set out
to find the golden ratio and so do it. This is no different than conspiracy
theorists finding hidden symbols on the American dollar bills or fake
shadows on photos from the moon landing. In a paper called
Misconceptions about the golden ratio from 1992, George Markowsky
argues:

“Generally, the mathematical properties [of the golden ratio]
are correctly stated, but much of what is presented about it
in art, architecture, literature and esthetics is false or
seriously misleading. Unfortunately, these statements about
the golden ratio have achieved the status of common
knowledge and are widely repeated.”
George Markowsky 20

As an example, the Parthenon was built in ancient Greece, and no source
text indicates that the Athenians were aware of the golden ratio.
Furthermore, one has to ignore large parts of the building’s foundation in
order to fit a golden rectangle on the structure of the building 21 . Leonardo
Da Vinci did illustrate a book named De Divina Proportione about ratios in
art, but there is no indication that he used these ideas much in his own

work. Although numerous academics have found the golden ratio in Da
Vinci’s work, these discoveries appear to be both subjective and flawed 22 .
It is important to separate fact from fiction when discussing systematic
design principles, and this is especially true for the subject of geometric
composition. Rather than beginning a fruitless search for such divine
proportions to serve a gross simplification of the world, we will instead
focus on a more concrete history of how technology long has inspired
designers to use geometric constraints to ease the burden of their work.
As these techniques developed, they became design methodologies used
even when designers were not limited by the constraints of the machine,
and they are today widely adopted by graphic designers to make
consistent and organized layouts.

Papyrus 47, the oldest surviving version of the
Book of Revelation.

We will begin this
story with an example
that predates these
ideas: The early
handwritten book
also called a codex.
The codex was a
significant
improvement over the
rolled papyrus, having
stacked pages in a
form that resembles
the modern book. The
popularity of the
codex coincided – or
was perhaps caused
by – the rise of
Christianity, and the
earliest Christian
manuscripts from the
second century are all
codices. These texts

are missing most of the presentational techniques we know today: The
texts have no headings, no letter case, and the lack of punctuation turn
them into one long paragraph. These texts were merely a medium for
communicating the spoken word, and little thought has been put into the
book as a medium. Most important, they were written by hand without
any guides to help the scribe. As a result, the number of lines varies
greatly from page to page, the lines often slope, and the right margin
changes based on how the scribe decided to break the words 23 .

Compare this to the much later illuminated manuscripts – books written

by hand in monasteries – that flourished in the Middle Ages. These texts
are much more deliberate in their layout. They use Gothic script, a type of
lettering that is very slow to write, and manuscript pages are often painted
with colorful miniature illustrations. Most important, these manuscripts
were not created from a blank page. Scribes would plan the design of the
book, and central to this planning was the creation of geometric helper
lines to guide the scribe while writing. First, a rectangle would be drawn
on the page to indicate the page margins. Then, this rectangle was split
into a grid of horizontal lines to guide the text while some parts were set
aside for illustrations. Finally, the scribe would carefully write and
illustrate the book according to the grid. This is in essence no different to
how designers today divide a canvas into smaller pieces to organize their
layouts.

A picture of the Malmesbury Bible where the underlying grid clearly stands out
next to the Gothic script and illustrations.

These methods changed from manual techniques to mechanical systems
when first Bi Cheng in China (1045 AD) and later Johannes Gutenberg in
Germany (1450 AD) invented movable type. This new printing technology
used small clay, wood, or metal letter blocks that could be slotted onto a
frame, inked and used to mass produce identical prints. One can imagine
how the critics at the time must have sounded a lot like what we hear
today about the computer: That these new machines constrain the artist
and make the design products uniform. In the case of Gutenberg’s early
printed Bibles, one can argue that the opposite is true. The printing press
did force Gutenberg to think about all aspects of book design in a
rectangular grid, but the creativity displayed within these constraints is
remarkable. To achieve a neat two-column layout, each letter was
produced in multiple widths so the line of text could be justified in both
ends. The typeface itself was the result of months of careful work
producing letters that were both a reference to the Gothic script of
yesterday and the mechanical processes of tomorrow. The printing press
did constrain the design, but printers found a world of creativity within
these geometric grids. Gutenberg’s Bibles are, in the words of Stephen
Fry, “much more beautiful than [they] need to be” 24 .

Movable type letter blocks cast in lead. Photo by purdman1 .

https://www.flickr.com/photos/purdman1/2875431305/in/photostream/

One of the last 49 surviving copies of the Gutenberg Bible.

The early 1900’s saw a proliferation of new technology from the Industrial
Revolution becoming available to artists and designers, and many of the
artistic and political movements of this period incorporated these
mechanical processes. Central to most of the European art movements
(Italy’s Futurism, France’s Dadaism, Germany’s Bauhaus), as well as the
Marxist movements in Russia and China, was the use of the printing press
as a way to rebel against the notion of fine art. One example is the Italian
Futurists who, inspired by urbanism and the machine, experimented with
the established grid of the printing press. If Gutenberg’s life work was to
fit designs into a rectangular grid, the Futurists saw it as their mission to
break this grid.

Ardengo Soffici from 1915.

“My revolution is aimed at the so-called harmony of the page,
which is contrary to the flux and reflux, the leaps and bursts
of style that run through the page. On the same page,
therefore, we will use three or four colors of ink, or even
twenty different typefaces if necessary”
Umbro Apollonio 25

This design by
Ardengo Soffici
shows a deliberate
breaking of the grid
with rectangular
letter blocks arranged
in a chaotic way.
These experiments
might not seem
terribly
groundbreaking to
the modern eye, but
they had a drastic
impact on the graphic
style of the following
decades.

As graphic design
evolved from a
printmaker’s task in
the 1920’s to a

flourishing profession in the 1950’s, these geometric composition
techniques matured with it. In 1928, Jan Tschichold released Die Neue
Typographie, a strict modernist manifesto that argued for the use of sans-

serif typefaces and uniform, left-aligned grid layouts. Although Tschichold
did not use the word grid nor formalize its use, most of the techniques of
the modern grid system were present: The division of the canvas into
smaller, uniform rectangles to guide the text on the page.

Examples of page divisions from Jan Tschichold's Die Neue Typographie. ©

These ideas quickly spread throughout Europe, and – propelled by
European emigration caused by the Second World War – to the United
States. Here, the grid system was adopted in products of the Golden Age
of Advertising in the 1950’s and 1960’s by designers such as Paul Rand
and Saul Bass who championed the use of expressive shapes and
typography within the confines of the grid. When we look at these design
products today, they stand out as incredible examples of this duality: An
artistic playfulness constrained by geometric principles.

Colorforms logo by Paul Rand, 1959. ©

Vertigo poster by Saul Bass, 1959. ©

Tschichold’s modernist ideas are clearly visible in one of the most famous
advertising designs of the postwar era – The Think Small Volkswagen

campaign. The Volkswagen Beetle was originally designed by Ferdinand
Porsche for the people of Adolf Hitler’s Third Reich, and selling this car to
the American consumer was no small feat. With clever text copy and a
very modernist look, the Think Small campaigns helped make the Beetle a
massive success in the US market.

The Think Small advertising campaign. ©

A new design aesthetic called the Swiss Style emerged in the 1960’s,

A diagram from Joseph Müller-Brockmann's Grid
Systems in Graphic Design illustrating how to
align type to a grid. ©

where designers began arguing for an even more systematic and
mathematical approach to design. Two books written by Swiss designers
are considered central to this movement: Grid Systems in Graphic Design
by Joseph Müller-Brockmann 26 and Designing Programmes by Karl
Gerstner 27 . Brockmann argued for an absolute minimalist design style
and the use of grid systems to organize the elements of a design into a
strict visual hierarchy.

It is important to
understand how
Brockmann’s concept
of a grid system
separates itself from
his predecessors.
Brockmann believed
that a grid system
should be absolutely
uniform, created by
dividing the canvas
into equally-sized
columns and rows.
Designers could then
use these basic

building blocks – called modules – to flow text or images vertically along
columns, horizontally along rows, or both. In Brockmann’s view, there was
no place for the designer to manually tweak the size of some elements by
eye. The beauty came from the strictness of the proportional grid.

It is fair to say that the Swiss Style represented an extremist view of how
geometric composition should be used in visual design. For fans of this
purely functional art, the work of Brockmann holds great clarity because
of its strictness and lack of ornaments. For critics, the same designs are

seen as cold and brutalist, lacking the creativity and playfulness seen in
work by American colleagues.

Posters by Joseph Müller-Brockmann. ©

The concept of a grid system has so far served two purposes. First, it is the
byproduct of the technical manufacturing processes of design products.
The printing press works by assembling small rectangular letter blocks on
a plate, so the designer has to think about the design process in terms of a
grid. In this case, the grid is a concrete limitation that designers have to
work around. Secondly, grid systems are also a design methodology used
by designers to achieve organized layouts even in places that do not have
such technical limitations. When grid systems became popular in web
design in the mid-2000’s, it was caused by a combination of these factors.
On the one hand, HTML (the document format for websites) operate with
rectangular elements that when rendered in a browser pushes subsequent
elements down on the page. The column grid is therefore a natural
container, as content can flow vertically without breaking the design. On
the other hand, computers are not bound by the same limitations as
mechanical systems, so the continued use of grid systems on the web
today is as much a best practice that is independent of the constraints of
the medium. A brief look at how nytimes.com, one of the most popular
websites on the internet, evolved in its first decade might help illustrate
this point.

The New York Times launched their daily news website in January 1996 28

, just a few years after the internet finished its transition from a private
network of academic institutions to a public, commercial medium 29 .
Although many of the web technologies we use today existed in some
form, web designers were limited to a few basic techniques when creating
websites. The first version of nytimes.com consisted of a single 575 x 300
pixel image split into clickable regions. As images provided the only way
of creating consistent designs across browsers, this technique – called
image mapping – was used heavily in the early days of the web. The
design took much inspiration from the printed paper, featuring a centered
logo, a date strip with the newspaper slogan (“All the news that’s fit to
print”, ironically), and a three-column layout. Given that this image was

http://web.archive.org/web/19961112181513/http://www.nytimes.com:80/

created manually in a graphics program and not programmatically, many
of the systematic qualities that we know from today’s grid systems on the
web were missing: The columns were not based on a uniform unit, and the
content did not extend vertically below the screen area. As many new
technologies, early web pages copied the form of existing technologies,
and this web design is clearly reminiscent of the newspaper grid.

The New York Times website on November 12, 1996. ©

At the end of 1998, nytimes.com had replaced the static image with
individual HTML elements, allowing their content to be updated
individually throughout the day. This layout featured many of the
techniques we consider vital to a modern user experience on the web: A
sidebar with stacked menu navigation, listings of articles within a vertical
column that extends beyond the screen, and tags to categorize this
content. Still, this wider three-column layout did not conform to a uniform
measurement for the grid columns, and pages varied in their presentation
techniques.

http://web.archive.org/web/19981212020124/http://nytimes.com:80/

The New York Times website on February 1, 1999.
©

This layout used
HTML attributes and
not a shared CSS file
to achieve the design.
This means that each
page was responsible
for its visual design,
and much of the
variation in grid
measurements could
be explained by the
fact that designers at
the New York Times
weren’t forced to
think systematically
about the design. As
the use of CSS
accelerated in the
following years, web

designers began to argue for bringing the strict modernist grid to the web.

The first Google result for “CSS grid system” is from an article titled
Flexible Layouts with CSS Positioning by Dug Falby on A List Apart in
2002. In the article, Falby argues for a universal, flexible layout system
that can adapt to the size of the browser. In 2004, the Design Director for
New York Times Online, Khoi Vinh, published a blog post titled Grid
Computing …. and Design where he argued for the use of uniform grid
units in web design:

“The new layout uses eight columns and four ‘super
columns,’ and it shoehorns everything into that structure [...]
Each column is 95 pixels wide and separated by a 10 pixel

https://web.archive.org/web/20030210232010/http://www.alistapart.com:80/stories/flexiblelayouts/
https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/2004/1231_grid_computi.php
https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/2004/1231_grid_computi.php

gutter, which means I can create graphics of logical widths in
increments of roughly 95 pixels each”
Khoi Vinh 30

This is the first online reference that explicitly describes a technique for
web layouts that mirrors the techniques presented in Brockmann’s Grid
Systems in Graphic Design. Vinh further developed these ideas in a
presentation with Mark Boulton from South by Southwest in 2008 titled
Grids are Good. Also in 2008, popular CSS libraries such as 960 Grid
System and Blueprint CSS implemented this stricter grid philosophy, and
these ideas have fundamentally not changed in modern CSS libraries
used to this day.

The New York Times website from October 13, 2006. ©

The New York Times website embraced many of these ideas with a 970px
grid system in 2006. Although not strictly pixel perfect, the central design
principle is an 11-column, 82-pixel column grid with a visual style that is
visibly stricter than its predecessor. This format was used until a major
redesign in 2013.

Grid systems are an integral part of digital design today. When building
digital products, designers use the grid to establish empty containers that
can be dynamically filled with content for the individual user. The way
these grid systems are applied is essentially no different from how
printmakers used them centuries ago, but one could argue that there is an
even greater need for them today with the explosion of digital content:
Digital design products must adapt to different screen sizes and show
dynamic content, so there is no true original design. This forces designers
to think systematically about visual layout. Hopefully, this short history has
helped clarify how designers through centuries have used geometric
composition techniques to create beautiful and balanced designs – in
print and on the web. In the following chapters, we will investigate how to
apply these ideas to our own designs in P5.js.

1. Loeb Classical Library (1936) Aristotle’s Minor Works, p. 7. London

2. Gottschalk, H. B. (1964) The De Coloribus and Its Author, p. 59-85. Hermes 92. Bd..H. 1:
JSTOR. Web. 11 Jan. 2017

3. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 25. University of Chicago
Press

4. Sloane, Patricia (1967) Colour: Basic Principles New Directions, p. 28-30. Studio Vista

5. Lowengard, Sarah (2006) The Creation of Color in Eighteenth-Century Europe New York, para.
129-139, Columbia University Press)

6. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 48. University of Chicago
Press

7. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 175-176. University of
Chicago Press

8. Munsell, A.H (1912) A Pigment Color System and Notation, pp. 239. The American Journal of
Psychology. Vol. 23. University of Illinois Press

http://web.archive.org/web/20060614201147/http://www.nytimes.com/
http://web.archive.org/web/20060614201147/http://www.nytimes.com/

9. Itten, Johannes (1973) The Art of Color: the subjective experience and objective rationale of
color. Van Nostrand Reinhold

10. Albers, Josef (1963) Interaction of Color. Yale University

11. Droste, Magdalena (2002) Bauhaus, p. 25. Taschen

12. Itten, Johannes (1970) The Elements of Color, p. 33-44. Van Nostrand Reinhold

13. Itten, Johannes (1970) The Elements of Color, p. 26. Van Nostrand Reinhold

14. MacEvoy, Bruce. Color Vision Handprint : Colormaking Attributes. N.p., 1 Aug. 2015. Web. 11
Jan. 2017.

15. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

16. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

17. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

18. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

19. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design, p. 9. Arthur Niggli

20. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 2. The College
Mathematics Journal, Vol. 23

21. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 8-9. The College
Mathematics Journal, Vol. 23

22. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 10-11. The College
Mathematics Journal, Vol. 23

23. Malik, Peter (2017) P. Beatty III (P47): The Codex, Its Scribe, and Its Text, p. 31 - 38. New
Testament tools, studies and documents, Vol. 52

24. Fry, Stephen (2008) The Machine That Made Us. BBC UK

25. Apollonio, Umbro (2009) Futurist Manifestos, p. 104. Tate Publishing

26. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design. Arthur Niggli

27. Gerstner, Karl (1964) Designing Programmes. Arthur Niggli

28. https://www.nytco.com/who-we-are/culture/our-history/#2000-1971-timeline

29. Peter, Ian (2004) So, who really did invent the Internet?. The Internet History Project

30. https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/
2004/1231_grid_computi.php

31. Arnheim, Rudolf (1974) Art and Visual Perception, p. 8. University of California Press

32. Heider, G.M. (1977) More about Hull and Koffka, American Psychologist, 32(5), 383

33. Kroeger, Michael (2008) Conversations With Students, p. 27. Princeton Architectural Press

34. Design Systems International was co-founded by the author

Layout

Geometric composition
“By making visual categories explicit, by extracting
underlying principles, and by showing structural relations at
work, [the aim is] not to replace spontaneous intuition but to
sharpen it, to shore it up, and to make its elements
communicable.”
Rudolf Arnheim 31

In the late 1800’s, psychologists in Germany performed a range of studies
that would later form the foundation of Gestalt psychology. This new
branch of psychology stated that humans, because we live in a complex
world, seek to derive fast, simplified conclusions about what we see. The
first thing most people see when presented with the drawing below is not
51 circles, but rather the groups these circles form based on their distance
to each other and other visual similarity: A rectangle and a triangle.
Observing how humans naturally try to turn a complex world into simple,
actionable insights, the German psychologist Kurt Koffka would famously
state that “the whole is something else than the sum of its parts” 32 .

Humans naturally group complex input into simpler visual categories, such as
these circles being perceived as a single rectangle and triangle

Because this branch of psychology is devoted to the mechanisms of
perception, and since it emerged in Germany at the same time of the
Bauhaus school, the Gestalt principles have long been used by artists and
designers to anticipate the effects of their work. This is not a chapter on
psychology, but Gestalt theory teaches us an important lesson about
graphic design: Users of your design will naturally draw conclusions based
on the entirety of your design, and if you do not formalize the content into
a coherent layout, you are not in control of how the design is perceived. In
other words, your entire design is a shape in itself, and that shape has to
be designed too.

Those who are just beginning their design career might think that the
ability to create clean and organized layouts is something that
automatically comes with experience. Although practice does make
perfect, it is remarkably hard to consistently arrange shapes on a page
without a basic system to guide the decisions. Luckily, there is a technique
that even the most gifted designers use to organize their layouts, achieve a

balance between the shapes used, and spark new ideas whenever
creativity falls short. This chapter focuses on an important layout
technique in graphic design often referred to as geometric composition,
which entails dividing the canvas into smaller parts and using these
divisions to arrange the visual elements. This technique can be used to
create endless organized and expressive designs, and it happens to be a
great technique for those of us using code in the design process.

Canvas Division
To demonstrate what geometric composition looks like in practice, let us
imagine we are asked to design a poster for an upcoming photographic
exhibition, and that the client wants this poster to hold exactly three
important photos from the exhibition. In our first attempt at designing
such a poster, we will position and scale the images to each take up one
third of the canvas. Although this might not be the most thrilling layout, it
guarantees that each image has an equal amount of space and that the
horizontal lines created between the bordering images are evenly
distributed from top to bottom. This is demonstrated in the code below
where we are using three rectangles with different colored fills ()
instead of images in order to not worry about image cropping. Notice how
the height of each image is set to be exactly one-third of the canvas
height, and how the y positions of the images are based on this value too.

const imgHeight = height / 3;

noStroke();
fill(75, 185, 165);
rect(0, 0, width, imgHeight);

fill(120, 155, 155);
rect(0, imgHeight, width, imgHeight);

fill(30, 50, 50);
rect(0, 2 * imgHeight, width, imgHeight);

Many designers use this Rule of Thirds in situations where centering a
shape is considered too dull or static. Some will even argue that placing
important shapes around the thirds of the canvas will increase the
dynamism and aesthetics of the design. Putting the validity of that
discussion aside, we have already achieved something that would be hard
to do without a layout system: Positioning and scaling three images evenly
across a canvas. However, the result appears somewhat dense because
there is no whitespace between the images. To make up for this, we can
introduce margins (a term used to describe empty space around content)
between our images to make the design more airy. The attentive reader
will notice that the math required for calculating the height of each image
is now a bit more complex. First, we have to find the size of the margin,
which we calculate based on the canvas height in order to make our layout
responsive in case we ever resize the canvas.

const margin = height / 20;

We then calculate the combined height of all three images, which is the
canvas height without our margins. Note that since we are only adding the
margin between the images, there are only two margins for three images.

const allHeight = height - 2 * margin;

Finally, we divide the allHeight variable by the number of images, which
gives us the height of a single image. This value will also be used with the
margin variable to calculate the position of each image.

const imgHeight = allHeight / 3;

The full code example below uses these variables to place each image at
the correct position. By changing the value of the margin variable, we can
easily increase or decrease the amount of whitespace, or even use the
random() function to randomize the margin every time the code runs.

const margin = height / 20;
const allHeight = height - 2 * margin;
const imgHeight = allHeight / 3;

background(240);
noStroke();

fill(75, 185, 165);
rect(0, 0, width, imgHeight);

fill(120, 155, 155);
rect(0, imgHeight + margin, width, imgHeight);

fill(30, 50, 50);
rect(0, 2 * (imgHeight + margin), width, imgHeight);

We can continue our quest to add more whitespace by introducing
margins around the edges of the canvas as well. Like a framed painting,
this will remove the denseness of the layout even more, and call attention
to each image as a separate piece of content. It will also allow us to add
captions underneath each photo if necessary. We use the same code from
above to calculate the height of each image, adding two extra margins for
the top and bottom. We also use the same type of calculation for a new
imgWidth variable to find the width of each image.

const margin = height / 20;
const imgWidth = width - 2 * margin;
const allHeight = height - 4 * margin;
const imgHeight = allHeight / 3;

background(240);
noStroke();
fill(30);

fill(75, 185, 165);
rect(margin, margin, imgWidth, imgHeight);

fill(120, 155, 155);
rect(margin, margin + imgHeight + margin, imgWidth, imgHeight);

fill(30, 50, 50);
rect(margin, margin + 2 * (imgHeight + margin), imgWidth,
imgHeight);

You might notice how the calculations are becoming longer the further
down the page we go. This is because each image has to find its y

position based on the number of images that came before it. There are
always multiple ways of achieving the same outcome when writing code,
and since some designers will find long calculations hard to read, let us
instead rewrite the same example using the translate() function.

As described in earlier chapters, the translate() function can be used to
move the canvas itself. If you draw a rectangle with rect(0, 0, 50, 50) ,
a square will normally appear in the top left corner of the canvas. However,
if you write translate(100, 100) in the code before drawing the
rectangle, the square will now appear 100 pixels down and 100 pixels to
the right because of the translation. You might think of this like what
happens when you click and drag on Google Maps: All shapes stay in the

same positions within the canvas, but the canvas itself is being moved
around. One powerful (and challenging) aspect of translations is that they
are cumulative, which means that they are added on top of previous
translations. This is best demonstrated with a quick example. Notice how
the second translation is added on top of the previous one, making the
rectangles show up below each other despite having the same x and y

values.

background(240);
noStroke();
fill(30);

translate(175, 100);
rect(0, 0, 150, 130);

translate(0, 175);
rect(0, 0, 150, 130);

We can therefore use the translate() function before drawing an image
to move the canvas down to the correct position. We no longer need the
long calculations for the last images, since the translations are added on
top of each other as we go along. Note that we are adding a few more lines
of code, but that is the compromise we have to make.

const margin = height / 20;
const imgWidth = width - 2 * margin;
const allHeight = height - 4 * margin;
const imgHeight = allHeight / 3;

background(240);
noStroke();

// Move down to the position of the first image and draw it

translate(margin, margin);
fill(75, 185, 165);
rect(0, 0, imgWidth, imgHeight);
// Move down to the second image position and draw it
translate(0, margin + imgHeight);
fill(120, 155, 155);
rect(0, 0, imgWidth, imgHeight);
// Move down to the last image position and draw it
translate(0, margin + imgHeight);
fill(30, 50, 50);
rect(0, 0, imgWidth, imgHeight);

The designs from the poster exercise might look simple, but they offer a
first taste of an indisputable fact: Geometric composition is a great
strategy when designing in code. It might take a little longer to write the
code compared to making the same design in a traditional design tool, but
the result is a pixel-perfect, balanced design that makes it easy to test
variations by tweaking a single variable.

Procedural Layouts
So far, we have manually calculated the position for each image in our
code based on the margin , imgWidth , and imgHeight variables. This
might not be a problem when working with three images, but it quickly
gets repetitive with a lot of content. As described in the Procedural
Shapes chapter, a for-loop can be used to run the same piece of code
multiple times after each other. Since all the images in the poster follow
the same layout rule, we can use a for-loop to draw the images
procedurally one after the other. The layout rule can be loosely translated
to something like this: For each image, move down the value of margin

(for the initial whitespace at the top of the canvas) and then move down
the value of imageHeight + margin as many times as there are prior
images. This description can be translated into code to look something

like this:

const imgY = margin + imageNum * (imageHeight + margin);

Note how this single line of code can be used to find the y position for
each image by changing the value of imageNum from 0 (first image) to 2

(last image). We can put this calculation to work inside of a for-loop where
the i variable also increments from 0 to 2 in steps of one, just like we
need.

for(let i = 0; i < 3; i++) {
const imgY = margin + i * (imgHeight + margin);

}

The example below uses this technique to draw the same layout with a
for-loop. As explained in the Color Schemes chapter, we also use an array
of color objects to draw different fills for the "images" with the same code.

const margin = height / 20;
const imgWidth = width - 2 * margin;
const allHeight = height - 4 * margin;
const imgHeight = allHeight / 3;
const colors = [

color(75, 185, 165),
color(120, 155, 155),
color(30, 50, 50)

];

background(240);
noStroke();

for(let i = 0; i < 3; i++) {
fill(colors[i]);

const imgY = margin + i * (imgHeight + margin);
rect(margin, imgY, imgWidth, imgHeight);

}

We can also rewrite this code to use the translate() function inside of
the for-loop. However, we need to be smart about where exactly we put it.
Since the first image needs to call translate(margin, margin) to
position itself by the outer margin, but each of the following images need
to call translate(0, imgHeight + margin) to move the canvas in the
correct amount, we will do the first translation before the for-loop and the
subsequent translations after drawing each image inside of the for-loop.
This produces the same design as above, but the cumulative translations
are easier to read for some. Keep in mind that both of these techniques are
perfectly valid and you should use whichever one makes the most sense to
you.

const margin = height / 20;
const imgWidth = width - 2 * margin;
const allHeight = height - 4 * margin;
const imgHeight = allHeight / 3;
const colors = [

color(75, 185, 165),
color(120, 155, 155),
color(30, 50, 50)

];

background(240);
noStroke();

// Translate to the position of the first image
translate(margin, margin);
for(let i = 0; i < 3; i++) {

fill(colors[i]);

rect(0, 0, imgWidth, imgHeight);

// Translate to the position of the next image
translate(0, imgHeight + margin);

}

These are the key principles concerning geometric composition: To use a
division of the canvas – with or without margins – to guide the size and
position of the content. Now let us explore how to use these ideas in more
detail, and uncover how to use the same techniques to make actual
layouts in code.

The Grid System
Although we have only divided our canvas into thirds, the same method
can be used with fewer or more divisions. If the poster example required
us to use four photos, we would not need to make a lot of changes to the
code to make that happen. However, as we increase the number of
divisions, the space for each image becomes narrower, and at some point
this will be unsuitable for our content. To make up for this, we can
introduce another division – this time by dividing the canvas width – to
add more flexibility to the layout system. This is the beginning of what in
graphic design is referred to as a grid system.

Before: A single division with margins.

After: Two divisions with margins.

A few important comments are needed here. First, we might as well begin
to use the correct terms now that we are using a proper grid system.
Graphic designers often refer to the spaces within a grid system as
modules, so this is the term that will be used from now on. Also, with all
this talk about modules, one might easily be a bit confused: What are

these modules and where are they in the code? The concept of modules is
in spirit comparable to the guides that designers use in design tools such
as Photoshop or Illustrator. They are horizontal and vertical lines that can
help the designer position the content, but they are not a part of the actual
design. In the same way, the modules of our grid systems are numbers
that we use to position and size the content, but besides storing these
numbers in a few variable, the modules are not necessarily visible in the
code nor the design.

With six modules, there is no longer a one-to-one mapping between the
number of photos in our poster and the number of modules in the grid
system. This makes it possible to explore how to use the grid in a more
creative way. In order to do this, we first need to use the imgWidth and
imgHeight calculations from earlier in this chapter to find the width and
height of the modules. The code is exactly the same, except for renaming
the variables to moduleHeight and moduleWidth and introducing a
division in the latter.

const margin = height / 20;
const allWidth = width - 3 * margin;
const allHeight = height - 4 * margin;
const moduleWidth = allWidth / 2;
const moduleHeight = allHeight / 3;

So how do we draw three pieces of content inside six modules? The first
option is to pick three modules to hold the images and leave the three
remaining modules blank. This is the first time where we are presented
with actual decisions to be made around composition, since we can create
a great number of designs using this approach. The examples below
demonstrate how to use this six-module grid system to create three
designs with different levels of whitespace.

Layout with room for text to flow left-right-left next to each image. See Code

Layout with room for text in the middle of the canvas. See Code

Layout with room for text in the left-hand side of the canvas. See Code

The next option is to draw a single piece of content across multiple
modules. This introduces the ability to highlight certain pieces of content
by changing the relative scale between the photos. This is demonstrated
in the example below where a single photo covers the uppermost four
modules while the remaining photos use the last two modules at the
bottom of the canvas. Note how the translate() function is used to
minimize the code needed to calculate the positions of the photos.

const margin = height / 20;
const allWidth = width - 3 * margin;
const allHeight = height - 4 * margin;
const moduleWidth = allWidth / 2;
const moduleHeight = allHeight / 3;

background(240);
noStroke();

translate(margin, margin);
fill(75, 185, 165);
rect(0, 0, 2 * moduleWidth + margin, 2 * moduleHeight +
margin);

translate(0, 2 * (moduleHeight + margin));
fill(120, 155, 155);
rect(0, 0, moduleWidth, moduleHeight);

fill(30, 50, 50);
rect(moduleWidth + margin, 0, moduleWidth, moduleHeight);

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/grid-sixths-poster-2.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/grid-sixths-poster.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/grid-sixths-poster-3.js

This was a brief introduction to the concept of a grid system, and how the
modules of a grid system can be used to position content within the
canvas. As we continue our journey into the world of geometric
composition, keep in mind that the core idea remains unchanged. That is,
to use the modules as building blocks for a final composition.

Composition Strategies
“The idea of the grid is that it gives you a system of order and
still gives you plenty of variety. [...] But the grid never
changes. It is always the interior that changes, and that is
what makes the thing come alive.”
Paul Rand 33

Our imaginary poster with three images was a worthwhile project for
demonstrating the basics of geometric composition, but it is a somewhat
simplified scenario compared to the type of content that a designer
normally encounters. In order to explore this concept further, let us spend
the rest of this chapter investigating other ways of using these same ideas
in code, and by looking at designers who take different approaches to
geometric composition. These designers utilize the grid in different ways.
There are formalist designers who strictly follow the lines of the grid, more
idea-driven designers who play within the grid, and designers who rarely
use geometric helpers. Our first steps into the world of geometric
composition is therefore constructed as – rather than a set of do’s and
don’ts – a journey from a strict to a more lenient way of using geometric
composition. Even though the examples vary in their number of divisions
and use of the translate() function, they are all essentially using the
same calculations as before. This time, we will also use content
placeholders to simplify the code examples: A heading (), a paragraph (

), and a picture ().

A strict approach to geometric composition means that most of the
content in your design should align with the lines created by the grid. In
order to achieve this, paragraph text can be sized to the module and
justified to create sharp edges on both the left and right side of the text
block, and images can be scaled and cropped to take up the entire space
of their module(s). The result is often a clean and balanced layout that,
despite this rather formalist approach to composition, leaves much room
for individual expression based on the modules and the content used. This
is demonstrated below with a module structure that is very similar to our
previous examples.

const margin = height / 30;
const allWidth = width - 3 * margin;
const allHeight = height - 5 * margin;
const moduleWidth = allWidth / 2;
const moduleHeight = allHeight / 4;

background(240);
noStroke();

fill(30, 50, 50);
rect(margin, margin, moduleWidth, moduleHeight / 4);

fill(120, 155, 155);
rect(margin + moduleWidth + margin, margin + moduleHeight +
margin, moduleWidth, moduleHeight);

fill(75, 185, 165);
rect(margin, margin + 2 * (moduleHeight + margin), 2 *
moduleWidth + margin, 2 * moduleHeight + margin);

Toggle Grid

A real-world example of this composition technique can be found in the
visual identity for the Whitney Museum designed by Dutch design studio
Experimental Jetset. The identity system is based on a strict grid system
where the vertical and horizontal lines of the content is broken up by a
stretchable and skewed “W” that also functions as a logotype for the
museum. The strictness of the grid system combined with the ever-
changing dynamic logo makes for a good visual language for a white-wall
museum that seeks to constantly renew itself through original exhibition
work.

This member calendar for Whitney Museum has a strict geometric layout similar to the
code example above. ©

The website of Whitney Museum has a mix of different horizontal divisions, but the strict
interpretation of the grid is visible throughout the website. ©

For designers who have a hard time creating compelling layouts from a
blank canvas, this stricter approach to composition can serve as a
concrete starting point for further exploration. The examples below show
a number of variations of the same idea.

This layout uses only two of the four vertical divisions which makes for an ordered and
balanced design with lots of whitespace. Toggle Grid See Code

A very large image with text content acting as small annotations. Toggle Grid
See Code

The larger heading takes precedence over the smaller paragraph and image in a layout
with heavy whitespace. Toggle Grid See Code

If this is an example of a strict interpretation of geometric composition,
then what does it mean to design with a more lenient interpretation of the
grid? The key is to find ways of removing the box-like aesthetic of the grid,
and there are many ways of doing this. Let us first explore how to break
the uniformity of the whitespace, and we will do this by allowing multiple
pieces of content to use the same module. The overlapping content makes
for a less formal composition while still adhering to the rules of the grid.
The example below uses three horizontal divisons in order to allow
content overlaps in the middle of the canvas. Notice how the heading is
placed at the bottom of the bottom-most modules.

const margin = height / 15;
const allWidth = width - 4 * margin;
const allHeight = height - 5 * margin;
const moduleWidth = allWidth / 3;
const moduleHeight = allHeight / 4;
const headingHeight = moduleHeight / 2;

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-strict-2.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-strict-3.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-strict-4.js

background(240);
noStroke();

translate(margin, margin);

fill(75, 185, 165);
rect(moduleWidth + margin, 0, 2 * moduleWidth + margin, 4 *
moduleHeight + 3 * margin);

fill(120, 155, 155);
rect(0, moduleHeight + margin, 2 * moduleWidth + margin, 2 *
moduleHeight + margin);

fill(30, 50, 50);
rect(0, 4 * moduleHeight + 3 * margin - headingHeight, 3 *
moduleWidth + 2 * margin, headingHeight);

Toggle Grid

A real-world example of this approach can be found in the visual identity
for CCC, an art cinema and cultural center in Santiago de Chile. The visual
language created by the American design studio Design Systems
International 34 in collaboration with Simón Sepúlveda is based on a
simple layout system with three basic building blocks: A logo with three
iconic C’s, a grid system based on the rule of thirds, and a playful color
palette. These elements can be combined to produce an endless number
of assets for the institution. For an institution where most of the marketing
material is created by a rotating team of volunteers, this simple but
flexible layout system helps streamline their public communications, and
the colored blocks produced by the geometric composition makes for an
extremely recognizable identity. Notice how the text is placed around the
margins of the canvas for a more playful expression.

This poster for CCC has an overlapping geometric layout similar to the code example
above. ©

The three designs below all use the same approach to create three
different designs with overlapping content.

Multi-layered layout with a large heading. Toggle Grid See Code

A denser layout with text overlay typical for a photo book. Toggle Grid See Code

A dynamic composition with overlapping content and no margins. Toggle Grid
See Code

Another way to deviate from the strictness of the grid is to change the way
our content is placed within the modules. Except for a few outliers, the
strategy so far has been to scale the content to the full width and height of
the module, and align the content at the top of the modules. We can open
up more possibilities by scaling the content in different ways, and aligning
the content to just one or two sides. This is demonstrated in the example
below, where some images overflow the modules by the value of a margin,
while other images shrink to align to a corner within their modules. This
makes for a less organized layout where few of the shapes align, but
without the chaos of a free-for-all layout.

const margin = height / 15;
const allWidth = width - 3 * margin;
const allHeight = height - 4 * margin;
const moduleWidth = allWidth / 2;
const moduleHeight = allHeight / 3;

background(240);
noStroke();
fill(75, 185, 165);

translate(margin, margin);

rect(0, margin / 2, moduleWidth, moduleHeight - margin);

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-overlap-3.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-overlap-2.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-overlap-4.js

rect(moduleWidth + margin, 0, moduleWidth, moduleHeight);
rect(margin / 2, moduleHeight + margin, moduleWidth + margin /
2, moduleHeight);
rect(moduleWidth + 2 * margin, moduleHeight + margin,
moduleWidth - margin, moduleHeight + margin);
rect(0, 2 * (moduleHeight + margin), moduleWidth - margin,
moduleHeight - margin);
rect(moduleWidth, 2 * moduleHeight + 3 * margin, moduleWidth +
margin, moduleHeight - margin);

Toggle Grid

The following two examples demonstrate different ways of playing within
the grid. The first poster by the American graphic design Paul Rand has a
layout similar to the code example above. It is arguable whether Rand
used a grid system at all to create this design, but the consistent margins
and alignment of some shapes might be an indication that the approach
was similar to ours. The second example is by the American graphic
designer Jacqueline Casey, who is best known for her work as Director of
MIT’s Office of Publications. Here, she plays with horizontal misalignment
by dividing the canvas into many thin modules and offsetting the type
from the center using the modules as a baseline for the typography.
Combined with a black and white color scheme, the result is a rigid yet
playful design that invites the reader to examine the text more closely.

IBM Golden Circle poster by Paul Rand. ©

Mediums of Language by Jacqueline Casey. ©

The three examples below use the same approach to create designs that
look less rigid while still adhering to the main lines created by the grid.

This layout loosely uses the grid to position overlapping elements. This helps break the
uniformity of the evenly sized modules. Toggle Grid See Code

This scrapboard-like layout has many smaller images that flow vertically along the
modules. Toggle Grid See Code

A simple two-module grid is used to position content with a heading in the page margin.
Toggle Grid See Code

This chapter introduced a set of geometric composition techniques that
can be used to construct graphic layouts by dividing the canvas into
smaller modules that are in turn used to arrange the content. These ideas
can help designers create a plan for the entire composition before
focusing on individual pieces of content. In some way, geometrical
composition is a way to think about the general before the specific, and
this can be a blessing or a curse depending on how these ideas are used.
As always, rules should not be followed blindly. Graphic design is above all
a human endeavour, and geometric composition techniques should be
used to explore layouts and generate new ideas suitable for the specific
content, not as a prison for templating content into a visual monoculture.
It should be mentioned that the techniques presented in this chapter were
meant to introduce the concept of geometric composition to designers
working in code, but P5.js cannot and should not be used for all purposes.
Many designers will need to use grid systems when designing websites,
but this will need to be done with CSS. It is my hope that even though the
specifics of each programming language will vary, the overall approach to
designing with grid systems in code will remain relevant.

The next chapter of this book is also devoted to the concept of grid
systems. This will give us an opportunity to focus on key details related to

https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-loose-2.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-loose-3.js
https://github.com/runemadsen/programmingdesignsystems.com/tree/master/examples/layout/geometric-composition/composition-loose-4.js

the use of grid systems in code, including how to write reusable code that
can be shared across projects, using more sophisticated grid systems, and
even using multiple grid systems on top of each other in the same design.

Pick one of your favorite musical artists and design a digital banner
for this artist using the artist name, a short description, and an image.
The banner is needed to promote the artist on the home page of a
musical streaming service. Ask yourself whether the style of music
calls for a rigid layout or a more loose interpretation of the grid, and
try to come up with a layout that makes sense for your content. Make
sure to use the code examples in this chapter if you are stuck.

1. Loeb Classical Library (1936) Aristotle’s Minor Works, p. 7. London

2. Gottschalk, H. B. (1964) The De Coloribus and Its Author, p. 59-85. Hermes 92. Bd..H. 1:
JSTOR. Web. 11 Jan. 2017

3. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 25. University of Chicago
Press

4. Sloane, Patricia (1967) Colour: Basic Principles New Directions, p. 28-30. Studio Vista

5. Lowengard, Sarah (2006) The Creation of Color in Eighteenth-Century Europe New York, para.
129-139, Columbia University Press)

6. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 48. University of Chicago
Press

7. Ball, Philip (2003) Bright Earth: Art and the Invention of Color, p. 175-176. University of
Chicago Press

8. Munsell, A.H (1912) A Pigment Color System and Notation, pp. 239. The American Journal of
Psychology. Vol. 23. University of Illinois Press

9. Itten, Johannes (1973) The Art of Color: the subjective experience and objective rationale of
color. Van Nostrand Reinhold

10. Albers, Josef (1963) Interaction of Color. Yale University

11. Droste, Magdalena (2002) Bauhaus, p. 25. Taschen

12. Itten, Johannes (1970) The Elements of Color, p. 33-44. Van Nostrand Reinhold

13. Itten, Johannes (1970) The Elements of Color, p. 26. Van Nostrand Reinhold

14. MacEvoy, Bruce. Color Vision Handprint : Colormaking Attributes. N.p., 1 Aug. 2015. Web. 11

EXERCISE

Jan. 2017.

15. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

16. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

17. O'Connor, Zena (2010) Color Harmony Revisited, p. 267-273. Color Research and Application.
Volume 35, Issue 4

18. Gegenfurtner, Karl. R.; Sharpe, Lindsay. T. (2001) Color Vision: From Genes to Perception, p.
3-11. Cambridge University Press

19. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design, p. 9. Arthur Niggli

20. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 2. The College
Mathematics Journal, Vol. 23

21. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 8-9. The College
Mathematics Journal, Vol. 23

22. Markowsky, George (1992) Misconceptions about the Golden Ratio, p. 10-11. The College
Mathematics Journal, Vol. 23

23. Malik, Peter (2017) P. Beatty III (P47): The Codex, Its Scribe, and Its Text, p. 31 - 38. New
Testament tools, studies and documents, Vol. 52

24. Fry, Stephen (2008) The Machine That Made Us. BBC UK

25. Apollonio, Umbro (2009) Futurist Manifestos, p. 104. Tate Publishing

26. Müller-Brockmann, Josef (1981) Grid Systems in Graphic Design. Arthur Niggli

27. Gerstner, Karl (1964) Designing Programmes. Arthur Niggli

28. https://www.nytco.com/who-we-are/culture/our-history/#2000-1971-timeline

29. Peter, Ian (2004) So, who really did invent the Internet?. The Internet History Project

30. https://web.archive.org/web/20050106024725/http://www.subtraction.com:80/archives/
2004/1231_grid_computi.php

31. Arnheim, Rudolf (1974) Art and Visual Perception, p. 8. University of California Press

32. Heider, G.M. (1977) More about Hull and Koffka, American Psychologist, 32(5), 383

33. Kroeger, Michael (2008) Conversations With Students, p. 27. Princeton Architectural Press

34. Design Systems International was co-founded by the author

... more to come
You have reached the end of a part of this book that is still being written.
Please subscribe to the newsletter to receive updates about new chapters!

	Programming Design Systems
	A free digital book that teaches a practical introduction to the new foundations of graphic design. By Rune Madsen.

	Introduction
	What is a design system?
	Figure and ground
	Position
	Size
	Rotation
	Designing a word
	Exercise

	Basic shapes
	Rectangle
	Ellipse
	Triangle
	An ice cream cone
	Exercise

	Custom shapes
	Programming custom shapes
	Straight lines
	Bézier curves
	Contours
	Wet and Sharp
	Exercise

	Procedural Shapes
	Sine and Cosine
	The For Loop
	Putting it together
	Exercise

	A short history of color theory
	Color models and color spaces
	Color models
	Color spaces
	Color profiles
	Color in P5.js
	Perceptually uniform color spaces
	What is wrong with sRGB?
	A better solution
	HSLuv
	Color schemes
	Lightness
	Saturation
	Hue
	Color scheme examples
	Procedural color schemes
	Exercise

	A short history of geometric composition
	Geometric composition
	Canvas Division
	Procedural Layouts
	The Grid System
	Composition Strategies
	Exercise

	... more to come

